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Abstract 

Wearable sleep-tracking technology is of growing use in the sleep and circadian fields, including for applications across other dis-
ciplines, inclusive of a variety of disease states. Patients increasingly present sleep data derived from their wearable devices to 
their providers and the ever-increasing availability of commercial devices and new-generation research/clinical tools has led to the 
wide adoption of wearables in research, which has become even more relevant given the discontinuation of the Philips Respironics 
Actiwatch. Standards for evaluating the performance of wearable sleep-tracking devices have been introduced and the available 
evidence suggests that consumer-grade devices exceed the performance of traditional actigraphy in assessing sleep as defined by 
polysomnogram. However, clear limitations exist, for example, the misclassification of wakefulness during the sleep period, prob-
lems with sleep tracking outside of the main sleep bout or nighttime period, artifacts, and unclear translation of performance to 
individuals with certain characteristics or comorbidities. This is of particular relevance when person-specific factors (like skin color 
or obesity) negatively impact sensor performance with the potential downstream impact of augmenting already existing healthcare 
disparities. However, wearable sleep-tracking technology holds great promise for our field, given features distinct from traditional 
actigraphy such as measurement of autonomic parameters, estimation of circadian features, and the potential to integrate other 
self-reported, objective, and passively recorded health indicators. Scientists face numerous decision points and barriers when incor-
porating traditional actigraphy, consumer-grade multi-sensor devices, or contemporary research/clinical-grade sleep trackers into 
their research. Considerations include wearable device capabilities and performance, target population and goals of the study, wear-
able device outputs and availability of raw and aggregate data, and data extraction, processing, and analysis. Given the difficulties in 
the implementation and utilization of wearable sleep-tracking technology in real-world research and clinical settings, the following 
State of the Science review requested by the Sleep Research Society aims to address the following questions. What data can weara-
ble sleep-tracking devices provide? How accurate are these data? What should be taken into account when incorporating wearable 
sleep-tracking devices into research? These outstanding questions and surrounding considerations motivated this work, outlining 
practical recommendations for using wearable technology in sleep and circadian research.
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Why do we need recommendations for the 
use of wearable sleep-tracking technology?
Over recent years, the capabilities and modalities to measure 
sleep in free-living conditions have drastically changed. From the 
consumer space, several new devices with sleep-tracking capabil-
ities have been introduced to the market (e.g., wearables, neara-
bles, and in-bed sensors). Moving beyond traditional sleep/wake 
assessments, many of these devices now measure sleep-related 
physiology (e.g., breathing rate, skin temperature, and cardiac 
autonomic indices during sleep) and generate proxies of sleep 
stages and cardiopulmonary sleep-related events (e.g., O2 desatu-
ration). They offer opportunities for continuous, unobtrusive, and 
large-scale sleep monitoring in the individual’s typical sleeping 
environment. Though the appropriateness of their use remains 
a matter of debate, these largely unregulated devices (mainly 
wearables) are increasingly adopted in sleep research and inves-
tigations across other scientific disciplines. Patients frequently 
bring wearable acquired data to their healthcare provider with 
variable uptake. The characteristics of a consumer product (e.g., 
user- centered design and functionalities and maintenance of 
manufacturer intellectual property), the lack of clarity surround-
ing the algorithms applied to the acquired physiological signals 
and the ability of the output to approximate gold-standard meas-
ures, and the lack of recommendations regarding appropriate 
research and clinical use are of concern.

On the other hand, the field of research and clinical-grade 
ambulatory sleep monitoring is rapidly evolving with resultant 
challenges for end users. For instance, Philips Respironics recently 
announced the discontinuation of the Actiwatch, the most widely 
used and well-accepted US Food and Drug Administration (FDA) 
cleared wrist-worn actigraph. In parallel, a new class of research/
clinical-grade devices has emerged, featuring multiple sensors, 
machine learning-based sleep stages classifications, wireless 
communication protocols, and cloud services similar to commer-
cial sleep trackers while providing the ability to access raw signal 
from their devices and maintaining transparency around algo-
rithm development and software updates, similar to traditional 
actigraphy.

Sleep researchers and clinicians now face the difficult task of 
selecting accurate and reliable alternative sleep-tracking devices 
that are acceptable to study participants and patients without the 
necessary foundational knowledge to make an informed decision. 

The Sleep Research Society (SRS) received requests from its mem-
bers and others in the sleep field for recommendations and sup-
port regarding the utilization of wearable sleep-tracking devices 
for sleep and circadian research in this rapidly evolving techno-
logical landscape. In response to these requests and to promote 
the informed and proper use of sleep-tracking technology, the SRS 
recruited a panel of experts to provide state of science and rec-
ommendations for using wearable technology in sleep and circa-
dian research. The goals of this manuscript are to provide answers 
regarding the data, accuracy, appropriate selection, and imple-
mentation of wearable sleep-tracking devices. The panel mem-
bers were carefully selected to ensure comprehensive coverage 
of expertise in various aspects related to the utilization of sleep 
wearable technology. This included individuals with deep insights 
into both research and clinical applications, as well as those well-
versed in the domains of sleep and circadian rhythms. Moreover, 
we incorporated perspectives from both academia and industry to 
offer a well-rounded view. Our panel also boasted a diverse array 
of competencies, encompassing the rationale and practical appli-
cations of wearable technology, the intricate hardware and soft-
ware components that underpin these devices, and the nuances 
of processing data collected through wearables. Additionally, we 
considered the essential statistical factors crucial in the analysis 
of wearable data. Throughout this collaborative effort, the panel 
convened for several online meetings. These sessions served as a 
platform for discussions, debates, and collective decision-making. 
The culmination of these interactions resulted in the crafting and 
endorsing the final manuscript. In addition, the SRS reviewed and 
endorses the major findings of this manuscript.

Here, we cover wearable sleep-tracking technology only due to 
its wide adoption, with particular emphasis on consumer-grade 
devices. We specifically refer to devices physically donned by 
an individual that monitor non-electroencephalographic (EEG) 
signals (i.e., motion, pulse, temperature) to provide an estimate 
of sleep-related parameters. For instance, these include the 
widely used wrist-worn smartwatches and, most recently, rings. 
Therefore, EEG devices including ambulatory polysomnography 
(PSG) and consumer-grade headbands as well as devices that use 
photoplethysmography (PPG) for the main purpose of monitor-
ing oxygen saturation and quantification of other respiratory and 
cardiovascular parameters, home sleep apnea tests, and other 
devices used for cardiopulmonary or seizure monitoring, are not 
covered here.

•  Performance evaluation studies assessing the measurement qualities of wearable sleep trackers are increasingly published and 
promoted by the community. The currently available landscape for performance evaluation studies of wearable sleep-tracking 
technology is biased, i.e., most evidence is derived from study cohorts of young healthy adults under controlled laboratory condi-
tions with little representation of minorities and individuals with chronic illnesses or sleep disorders. There is often no or minimal 
regard for other physiologic or external factors that may challenge the performance of these devices in real-world applications 
as intended. Here, we provide recommendations on how to interpret and contextualize studies evaluating the performance of 
wearable sleep-tracking technology and provide considerations when integrating wearable sleep-tracking in research.

•  Automatically processed outputs from contemporary research/clinical-grade devices should not be exempt from rigorous performance 
evaluation due to the “research/clinical-grade” status of the device.

•  While widely used and perceived as easy to use by most, consumer-grade devices hold hidden complexity (e.g., data access, fees, 
privacy, and security) driven by the fact that these devices are largely designed for consumers and not for research/clinical use.

• Data preprocessing steps may be required to properly use and interpret large-scale wearable sleep-tracking technology data.
• Careful interpretation of study results based on wearable sleep-tracking technology data is needed. D
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We would like to emphasize that it is not the intention of the 
panel to endorse or discredit any product. However, given the 
nature of this work, it was deemed necessary that examples of 
commercial entities and specific devices be provided to the reader. 
The examples were chosen based on different criteria including 
market shares and popularity of products, as well as specific rele-
vant features offered by a device and/or company.

Introduction to wearable sleep-tracking 
technology
A comprehensive understanding of sleep and its interactions 
with health and disease requires that sleep is measured accu-
rately, reliably, efficiently, and longitudinally. PSG is recognized as 
the gold-standard measurement for sleep. Many worthy charac-
teristics substantiate PSG as the gold standard. However, inher-
ent limitations (e.g., cost, time, specialized personnel resources, 
dependence on manual scoring with imperfect inter-rater reliabil-
ity, to name a few) reduce the scalability of PSG sleep assessments 

and prevent longitudinal and ecologically valid (i.e., in the every-
day environments of the sleeper) sleep measurement. Over the 
years, different solutions have been proposed to measure sleep 
outside the laboratory. Among them, actigraphy, i.e., wearable 
devices with an embedded accelerometer, gained popularity.

Although somewhat arbitrary, to help readers navigate the 
sleep wearable ecosystem, we have classified wearable devices 
into three main groups: Traditional research/clinical-grade actigra-
phy, consumer-grade devices, and contemporary research/clinical-grade 
devices. While there is some overlap, these classes broadly differ 
in key characteristics (Table 1). It is worth mentioning that the 
line between consumer-grade and research/clinical-grade devices 
has been blurred, with a substantial gray area between wellness 
and health tools. For example, it is now common to see certain 
functions that have been cleared by the US FDA as “software as 
a medical device” (e.g., atrial fibrillation detection [1]) applied to 
devices that are not cleared by the FDA.

Key milestones [2–19] for the wearable sleep-tracking technol-
ogy field are provided in Figure 1.

Table 1. Key characteristics across different classes of wearable devices

Traditional research/clinical-
grade actigraphy

Consumer-grade devices Contemporary research/clinical-
grade devices

Example(s) Philips Respironics Actiwatch2 
(discontinued), Ambulatory 
Monitoring, Inc., 
Motionlogger, Axivity AX3-6

Fitbit’s devices, OURA’s rings, Samsung 
Galaxy Watches

GeneActive, Empatica 
EmbracePlus, Belun ring, 
SleepImage, Oxitone

Sensor(s) 3-Axis 
accelerometer + additional 
sensors (e.g., ambient light, 
event marker, temperature, 
etc.)

3-Axis accelerometer and PPG + additional 
sensors (e.g., skin temperature, skin 
conductance, ambient light, barometer, 
gyroscope, GPS, ECG, etc.)

3-Axis accelerometer and 
PPG + additional sensors 
(e.g., skin temperature, skin 
conductance, ambient light, 
etc.)

Feedback(s) No Audio/visual (e.g., display, embedded 
speaker), haptic (e.g., vibration)

Audio/visual (e.g., display, 
embedded speaker), haptic 
(e.g., vibration)

External cloud 
service(s)

No Yes Yes

API/SDK Certain devices only (e.g., 
AX3-6)

Yes, to some extent Yes, to some extent

Raw data access Yes (mostly) No, for most of the cases Yes

Communication 
protocol(s)

Wire (e.g., USB) Wireless Wireless

Embedded 
algorithm(s)

Mostly, open-access (e.g., 
Cole–Kripke and Sadeh) 
algorithms to classify sleep/
wake pattern

Proprietary algorithms to classify sleep, 
activity, and other aspects of health/
wellness

Open-access and proprietary 
algorithms to classify sleep, 
activity, and other aspects of 
health/wellness

Target audience Mainly, researchers and 
clinicians

Mainly, consumer Mainly, researchers and clinicians

App-based 
interface

No Yes Yes

Capability 24/7 sleep/wake and activity 
assessments

24/7 sleep/wake and stages, activity, 
and other physiological data 
(e.g., cardiorespiratory function) 
assessments.

24/7 sleep/wake and sleep stages, 
activity, and other physiological 
data (e.g., cardiorespiratory 
function) assessments.

Battery life Typically, 30 + days 2–10 days, largely varying depending on 
the sensors’ configuration settings.

2–30 + days, largely varying 
depending on the sensors’ 
configuration settings.

This classification (arbitrary, defined by the expert panel) aims to help the readers understand important differences and considerations when choosing between 
research/clinical-grade devices and consumer-grade devices. We would also like to recognize that traditional actigraphy evolved. Nowadays, research/clinical-
focused wearables leverage similar technological advantages brought by “the consumer wearable revolution”. We wish to underscore that it is not our intention 
to either endorse or discredit any product. Nonetheless, due to the nature of this work, we found it necessary to offer readers examples of commercial entities 
and specific devices. These examples were selected based on various criteria, including market presence, product popularity, and the specific relevant features 
offered by a device or company. PPG, photoplethysmography; ECG, electrocardiography; GPS, global positioning system
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Traditional research/clinical-grade actigraphy
Traditional actigraphy has served a longstanding and important 
role as a cost-efficient and unobtrusive accepted alternative 
to PSG for objectively estimating sleep longitudinally, both for 
research and clinical purposes [20]. Fundamentally, actigraphy 
strictly relies upon changes in gravitational acceleration detected 
through piezoelectric sensors to assess movement, with “vali-
dated” and publicly accessible algorithms employed to translate 
movement into estimates of sleep and wake states. Although 
actigraphy can be collected from multiple body locations (e.g., 
ankle, legs, waist), wrist actigraphy is the predominant approach, 
with devices usually worn on the nondominant wrist [21].

Traditional actigraphy has notable limitations. For example, it 
applies a simple dichotomous classification approach (sleep vs. 
wake), which prevents a more comprehensive description of sleep 
architecture. In addition, traditional actigraphy has consistently 
been shown to demonstrate a poor ability to accurately detect 
wake episodes during the attempted sleep period, which is gen-
erally thought to be an inherent limitation of the strict reliance 
on accelerometry and the absence of other biological signals. 
Ultimately, this results in the device often misclassifying motion-
less wake as sleep. As such, performance abilities of traditional 
actigraphy will vary greatly based upon the behavior of the user, 
as well as the proportion of wake during a sleep period. Moreover, 

Figure 1. Timeline for innovation, technological advancements, regulation, and standardization initiative.
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no empirically determined, standardized setting configurations 
exist, despite research highlighting that device performance is 
significantly influenced by acquisition settings, with the out-of-
the-box settings potentially resulting in notable bias within cer-
tain populations (e.g., among persons experiencing certain sleep 
disorders, such as insomnia [22], hypersomnia, and movement- 
related sleep disorders, as well as other conditions including neu-
rodegenerative movement disorders) [23]. It is worth mentioning 
that traditional actigraphy can be relatively expensive (upwards 
of $1000 per device), requires patients/participants to return the 
device for data download, and relies upon trained personnel 
for the cleaning and interpretation of the data. Consequently, 
although less intrusive than PSG, these inherent limitations 
reduce the scale and scope of actigraphic sleep measurement.

Box 1 shows a historical perspective of traditional research/
clinical-grade actigraphy.

Consumer-grade devices
The landscape of available tools for objectively and conveniently 
measuring sleep in free-living conditions began to change with 
the emergence of commercially available sleep-tracking products 
at the end of the 2000s. In 2009, the Zeo Personal Sleep Coach 
took the scene with a novel headband tracking brain activity 
and movement during sleep. Data were summarized on a bed-
side display or smartphone application. Yet, it was the arrival of 
the Jawbone UP in 2011 that introduced a motion-based sleep- 
tracking feature as part of a fitness-tracking band. Although these 
two technologies are currently out of business, this marked the 
beginning of the boom of consumer-grade sleep-tracking technol-
ogy across the past decade. Box 2 shows a historical perspective 
of consumer-grade wearables.

Currently, consumer-grade sleep-tracking devices vary notably 
in approach (i.e., contact-based/wearable or contactless/neara-
ble), hardware (i.e., wrist-worn wearables vs. ring wearables vs. 
EEG headbands; variation in incorporated sensors), and software 
(i.e., scoring algorithms) capabilities, and performance [21, 24]. 
Most of these consumer-grade devices do not exclusively target 
sleep but offer a broad range of features (e.g., tracking activity, 
heart rate [HR]). As such, sleep has different degrees of centrality/
importance among different devices, depending on the use cases 
the device company focuses on, though many feature sleep as 
the primary output. Initially, the original purpose of wearables 
revolved around the quantified self to promote wellness, now, 
many devices cross the fine line between wellness and medical 
products. Most of these devices collect clinical parameters (e.g., 
oxygen saturation, electrocardiogram [ECG]) and include FDA-
cleared features like atrial fibrillation detection.

The most common sensors embedded in consumer-grade 
wearable devices are accelerometry and PPG. However, different 
devices use a broad range of additional sensors (e.g., skin con-
ductance and temperature) enabling the measurement of sleep 
together with many other markers of health with a single tool. 
The integration of PPG in consumer-grade wearables was trans-
formative, as PPG measured pulse and pulse rate variability (a 
proxy for HR variability [HRV]) and allowed for the estimation 
of sleep stages given the characteristic HR and HRV signatures 
marking each stage. PPG pulse rate variability also provides a sur-
rogate marker for the autonomic nervous system function.

Wearables usually have a companion mobile app, and fre-
quently a web interface, where more details are accessible. 
Most wearables utilize wireless connectivity and have different 
modules to provide user feedback (audio/visual display, haptic 

sensor). Wearable data are typically processed both in the dedi-
cated firmware (e.g., HR) and in the cloud (e.g., sleep data). Battery 
life varies widely across devices and is dependent on the sensors 
used and settings.

Box 1. Traditional research/clinical-grade actigraphy: a 
historical perspective.

The origin of using movement data to estimate sleep and 
wake dates to Foster et al. [2] and Kupfer et al. [3] in the 
early 1970s. However, it was not until 1978 that Kripke and 
colleagues coined the term “actigraphy,” while also advanc-
ing the technology to utilize piezoelectric transducers [4]. 
The next two decades brought major evolutions largely in 
the form of algorithmic advancements (e.g., validated auto-
mated scoring) that greatly improved measurement accu-
racy relative to polysomnography (PSG), and enhanced the 
overall utility of actigraphy as a sleep measurement tool in 
free-living conditions. Specifically, Webster et al. developed 
the first automated scoring algorithm in 1982 [18], but this 
was specific to tape-based devices. The work of Cole et al. 
[5] further advanced actigraphy by establishing a validated 
scoring algorithm for micro-computerized actigraphic 
devices [20]. Subsequently, Sadeh et al. [6] developed a new 
approach for the automatic scoring of data collected with 
micro-computerized actigraphic devices, while also estab-
lishing the first algorithms for use in pediatric and sleep- 
disordered populations.

Actigraphy progression largely stalled until 2010, when Terrill 
et al. [8] demonstrated that triaxial accelerometry, improved 
the capture of more types of movements. Subsequent gener-
ations of traditional actigraphy largely adopted this hardware 
change by implementing microelectromechanical systems 
that yielded relatively prolonged recordings of triaxial acceler-
ometry in the raw form and at high resolution. Over the recent 
years, advances in the field of actigraphy have been largely 
focused on improving algorithms through the integration of 
machine learning sleep and wake scoring algorithms and new 
or evolved hardware [26].

Actigraphy notably grew in popularity as a research tool 
across the 1990s, with a multitude of investigations emerg-
ing that employed the technology in free-living condi-
tions, prompting the American Academy of Sleep Medicine 
(AASM) to release the first practice parameters for the use 
of actigraphy clinically in 1995 [7]. In 2003, Ancoli-Israel et 
al. [37] produced a review paper for the AASM on the role 
of actigraphy in the measurement of sleep and circadian 
rhythms, which informed an updated clinical practice 
parameters [19]. Over the past two decades, the AASM has 
produced updated versions of the clinical practice parame-
ters, grounded in research findings derived from actigraphic 
studies, with the most recent published in 2018 [12]. Yet, an 
important advancement in the application of actigraphy for 
both research and clinical purposes came from the efforts 
of Ancoli-Israel et al. [10] in 2015 on behalf of the Society of 
Behavioral Sleep Medicine, which resulted in a standardized 
manual for applying, scoring, and interpreting actigraphy. 
These recommendations further solidified actigraphy’s role 
as the primary tool for objectively measuring sleep and cir-
cadian rhythms in free-living conditions.
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We would like to also warn the readers that despite the 
apparent simplicity, appropriate use of consumer-grade 
sleep-tracking devices for research/clinical purposes is quite 
challenging and holds hidden complexity. As the name implies, 

consumer-grade devices are designed for consumers. This con-
fers advantages, which include optimized user interface and user 
experience designs and functionalities increasing the ease of 
operation. However, given that the primary purpose is sleep track-
ing to inform the consumer, there are significant limitations for 
research and clinical use cases, including undisclosed (black-box) 
algorithms, (typically) inaccessible raw data, privacy & security 
concerns, lack of control over software updates, unknown con-
sistency and reliability of hardware components, and uncertain 
long-term availability of a device and model. While these short-
comings may be overcome in the future, at the current time, the 
use of consumer-grade sleep-tracking devices for research and 
clinical purposes requires acceptance of these limitations.

We would like to point the readers to the following resources 
for further details, pros and cons, capability, and use of consumer- 
grade sleep-tracking wearable technology [21, 24, 25].

Contemporary research/clinical-grade devices
The traditional actigraphy field is evolving and there is a growing 
availability of “contemporary” research/clinical-grade wearable 
devices. These devices share characteristics of both traditional 
clinical/research-grade actigraphy (e.g., raw data availability, 
disclosure of sleep-classifier algorithms) and consumer-grade 
devices (e.g., wireless communication protocols, cloud services, 
raw accelerometry data storage as opposed to activity counts, 
integration of PPG sensors). Some identify the main distinction 
between traditional and contemporary accelerometer devices as 
the ability to access raw acceleration data prior to a reduction 
in activity counts [26]. While many of these devices maintain an 
exclusive focus on sleep tracking, most of them are positioned as 
multipurpose health tools. Of note, most contemporary research/
clinical-grade wearable devices and associated services are avail-
able under subscription, which can pose certain challenges to 
research and clinical work. However, they do provide flexibility by 
allowing the user the capacity to select or even develop their own 
sleep classification algorithm.

What data can wearable sleep-tracking 
devices provide?
Wearable technology, and particularly multi-sensor devices, cur-
rently provide a broad range of measurements including “raw” sen-
sor data and aggregate data, continuously over 24/7 periods. Largely 
(but not always), consumer-grade devices restrict raw data access. 
Beyond concerns related to intellectual property, this is often also 
due to the limited memory capacity and intended use of these 
devices. Most of these aggregate measurements are generated by 
either open-access or proprietary undisclosed algorithms, with the 
latter mainly applying to consumer-grade devices. The granularity 
and accuracy of both raw data and aggregate measures largely vary 
across devices (i.e., not all devices and not all the data have the same 
level of accuracy when compared to the gold standard).

A detailed review of the main signals and measures used in 
wearable sleep technology is provided elsewhere [24, 27, 28]. Here, 
we provide an overview of the main types of data provided by 
wearable technologies. For each type of data, we briefly describe 
the corresponding measures and provide practical warnings for 
using them in research/clinical work.

“Raw” Data
Here, we will use the term “raw data,” to refer to the actual sig-
nal values recorded by the device sensors at a specific sampling 
frequency. Whereas they are often confused with pre-processed 

Box 2. Consumer-grade wearables: a historical 
perspective.

The earliest generations of consumer-grade wearable sleep 
trackers, including devices such as the Jawbone UP and 
Fitbit Flex, were designed for the primary purpose of activ-
ity tracking and relied solely on a single-sensor accelerom-
eter; therefore, sleep tracking was a supplementary feature. 
These devices generally showed poor performance in dif-
ferentiating sleep from wake relative to polysomnography 
(PSG), and worse performance characteristics than tradi-
tional actigraphy.

Initially, only summary data were available from single- 
sensor consumer-grade wearable devices until third-party 
companies (e.g., Fitabase [launched in 2012; Small Steps 
Labs LLC]) provided researchers with more granular data 
at a cost. However, raw data was and remains largely una-
vailable. Over the coming years, newer device generations 
demonstrated improved performance characteristics, 
despite no apparent changes in hardware, which suggested 
improved scoring algorithms. The integration of photople-
thysmography (PPG), affording the ability to capture heart 
rate, was a notable advancement for consumer-grade weara-
bles as the estimate of heart rate variability allowed for sleep 
staging (i.e., light, deep, and rapid-eye-movement sleep). The 
Jawbone UP3 (2015) was among the first consumer-grade 
devices that included both accelerometry and PPG sensors 
[158]. Adding PPG greatly improved sleep quantification esti-
mations (evident when both contextualizing historical per-
formance statistics and empirically evaluated) [105], but the 
first generation of multi-sensor devices still demonstrated 
poor sleep classification abilities.

Over the recent years, countless multi-sensor consumer- 
grade wearables have been developed, with these either 
being newer generations of older models or novel devices 
entering the marketplace. Sleep-staging classifiers have 
markedly improved during this time, correctly identifying 
sleep stages about 50%–70% of the time [60, 159]. Moreover, 
some multi-sensor devices also measure blood oxygen 
levels (SpO2) which may have clinical relevance (e.g., in 
screening for sleep-disordered breathing). At this juncture, 
in well- designed, highly controlled in-laboratory protocols, 
modern multi-sensor consumer-grade wearable devices are 
either comparable or superior to traditional actigraphy in 
sleep measurements. In addition to superior performance, 
consumer- grade wearable sleep trackers have the advantage 
of a significantly lower cost than traditional actigraphy, with 
many devices being available for less than 100–200 USD.

The prominent use of consumer-grade wearable sleep 
trackers among the general population is also notably 
attractive, given the capacity to expand the scope and scale 
of population-level sleep research. With improved machine 
learning algorithms and other innovations related to data 
acquisition, processing, storage, and exchange, the utility 
and potential promise of these devices to objectively meas-
ure sleep in free-living conditions continues to progress.
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high-granularity aggregate indicators (e.g., 30 s sleep staging), raw 
data typically allow for a more reproducible computation of the key 
measures used in research and clinical work [29]. Raw data are more 
commonly (but not always) available from research/clinical-grade 
devices, whereas most consumer-grade trackers only provide aggre-
gate measurements. Table 2 shows an overview of the types of data 
that are commonly provided by wearable devices.

Aggregate indicators
Sleep measures
Sleep aggregated indicators refer to the classical overnight sleep 
parameters (e.g., total sleep time (TST), sleep efficiency (SE), 
time spent in different stages of sleep) as defined by American 
Academy of Sleep Medicine (AASM) standards [32]. Table 3 shows 
an overview of the common aggregated sleep measures provided 
by wearable devices.

Proxies of circadian measures
The human circadian system is a critical input into a broad range 
of behaviors, some of which can be captured with actigraphy data. 
As such, these actigraphy-based factors can sometimes be used 
to model outputs and/or inputs into the circadian system. These 
variables are admittedly imperfect because human behaviors are 
driven by multiple factors, including social and other behavio-
ral factors that can be misalignment with physiology; however, 
evidence suggests that these measures remain informative. For 
example, bedtime is robustly correlated with dim light mela-
tonin onset in healthy individuals (e.g., nonshift workers who are 
well-entrained) despite being influenced by multiple physiologi-
cal and socio-behavioral factors [34–36].

A few considerations are important when considering the use 
of wearable devices for inferences regarding the circadian system. 
Most devices do not provide such outputs by default; instead, 
either high-granularity actigraphy data (i.e., steps, activity count, 
and/or light data) or the sleep measures derived from actigraphy 
data need to be processed further through additional software.

Cosinor analysis has long been applied to actigraphy to esti-
mate acrophase, mesor, period, and amplitude of the rest-activity 
rhythm. A cosine curve with a period at or near 24 hours is fit to 
the data by the least-squares method and from that, acrophase 
(time to peak activity), amplitude (peak to nadir difference), and 
mean of the curve can be identified [37]. However, because cir-
cadian rhythms are sometimes non-sinusoidal, alternatives such 
as transformation of the cosine curve or other nonparametric 
methods often result in a better fit to activity data [37, 38]. The 
pseudo-F statistic captures the extent that an individual’s sleep–
wake activity conforms to the extended cosine model and is a 
marker of the strength of the circadian rhythm [37, 38]. However, 
given the prevalence of non-sinusoidal patterns in rest-activity 
rhythms, nonparametric approaches may provide a better proxy 
for circadian rhythms derived from actigraphy [39].

The use of models of the human circadian system (e.g., the 
Kronauer model [40] and its subsequent variations [41–43], or 
the Hannay Model [44]) has emergent evidence for producing 
accurate estimates of circadian phase, particularly when there 
could be misalignment between behaviors (e.g., sleep–wake tim-
ing) and physiology. These methods are usually compared against 
gold standard circadian variables that are collected under highly 
controlled laboratory settings, such as dim light melatonin onset. 
Importantly, the use of these approaches with wearable devices 
may rely on activity as the only available input into these light-
based models, though evidence across multiple populations has 

supported the robustness of this method [45, 46], perhaps due to 
the limitations of measuring light on the wrist [47]. Additionally, 
these methods typically require longer data collection than sleep 
indicators, especially if there is significant day-to-day variability 
in activity and light exposure patterns. In a sample of fixed night 
shift workers with significant circadian disruption, two weeks of 
actigraphy data were able to produce estimates that had strong 
agreement with dim light melatonin onset [46]. Notably, these 
predictions are comparable to other behavioral proxies (e.g., bed-
time) in healthy and entrained individuals, but are two to four 
times more accurate in populations with significant circadian 
misalignment (i.e., night shift workers) [45, 46].

Table 4 shows an overview of the common sleep timing and 
circadian proxy parameters that can be derived from wearable 
device collected data.

Activity
Table 5 shows an overview of the common activity data provided 
by wearable devices.

Respiratory
Table 6 shows an overview of the common respiratory data pro-
vided by wearable devices.

Cardiovascular
Most devices use continuous PPG data to process pulse rate (sim-
ply referred to as HR) and pulse rate variability (simply referred to 
as HRV). Single-time measurement of HR and HRV is also possible 
via the ECG technique, which some devices offer by instructing 
the user to touch an electrode placed on the device with their free 
hand. Care should be taken when deciding which sensor to use if 
HR and HRV data are of interest, due to several issues character-
izing the PPG technique and the processing techniques applied to 
the PPG signal. Table 7 shows an overview of the common cardiac 
data provided by wearable devices.

How do wearable sleep-tracking devices 
perform?
How to interpret a performance evaluation 
(“validation”) study
Performance evaluation studies are conducted to determine the 
capacity of wearable sleep-tracking technologies to accurately 
measure the indicators of interest. In this context, the term “per-
formance evaluation” has been recommended instead of “valida-
tion” to account for the fast-paced continuous update of device 
features, which prevents establishing an absolute level of validity 
for a given device [17].

Briefly, the performance of a device is evaluated by simulta-
neously measuring sleep in the same individuals with both the 
device of interest and a reference method (usually gold standard, 
manually scored PSG). The device output is then compared with 
the reference output recorded during the same time interval at 
epoch-by-epoch and/or overnight summary levels, which provide 
distinct information regarding the performance of the device [16]. 
While performance evaluation can be potentially applied to any 
raw signal provided by the device (e.g., PPG, HR, temperature, 
acceleration), most studies focus on aggregated sleep indicators 
(e.g., TST) and high-granularity sleep/wake and sleep stage classi-
fication (e.g., 30- or 60-s epoch-by-epoch classification).

Here, we outline the main aspects to consider when reading a 
performance evaluation study and when interpreting the related 
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Table 2. “Raw” data from wearables

“Raw” data Warning

Accelerometry. Most wearables available on the market include one or more 
accelerometry sensors. Whereas single-axis accelerometers are commonly 
employed by traditional research/clinical-grade devices, consumer-grade and 
contemporary research/clinical-grade devices typically use triaxial sensors (i.e., 
measuring acceleration on the x-, y- and z-axes). Note that raw accelerometer 
data typically comes at a relatively high sampling frequency (e.g., 20–100 Hz, 
meaning that 20–100 values per second are provided for each axis). Accelerometry 
data is often submitted to a first processing stage within the device to compute 
a set of features or aggregated variables, such as activity counts, steps, time 
spent at different intensities, and energy expenditure (e.g., calories). When raw 
accelerometry data is available, it can be processed using low-pass filters to isolate 
the gravity component, and potentially body position (depending on the location of 
the sensor), as well as bandpass filters to isolate the motion component (i.e., sensor 
acceleration net to the gravity component) [30].

Access to raw accelerometry data is rarely provided, 
despite a recent industry trend towards improving 
data sharing (e.g., raw accelerometry data is now 
available for certain consumer-grade devices through 
an application programming interface/software 
development kit). 

Caution should be paid when classifying sleep or 
computing aggregated measures from raw acceleration 
with legacy algorithms, as many in the literature are 
adapted to signal from a single-axis accelerometer.

Photoplethysmography (PPG). PPG uses light reflection or transmission to capture 
changes in blood volume during a cardiac cycle. Although PPG values are only 
indirect estimates of the actual changes in cardiac activity, being often expressed 
with arbitrary measurement units, such raw PPG data are also representative 
of physiological (e.g., vasomotor, blood pressure) activity and processes that 
cannot be captured by other signals. A few contemporary research/clinical-grade 
devices provide raw PPG signal values, enabling researchers and clinicians to 
apply standardized and more reproducible procedures for computing aggregate 
estimates of heart rate (HR) and heart rate variability (HRV) (e.g., via pulse peaks 
detection), rather than relying on the scores automatically computed by the device. 
Additionally, raw data might be used for the development of new algorithms and 
applications (e.g., PPG-based arrhythmia detection). PPG signal is highly susceptible 
to artifacts [24] and typically, can only be considered reliable under conditions of no 
movement when it comes to HRV analysis.

Raw PPG signal is rarely accessible. Not having access 
to the PPG signal results in the inability to apply 
customized algorithms to analyze the PPG waveform, 
and failure to identify problems with signal quality or 
other potential issues that require the visual inspection 
of raw data, as opposed to the resulting aggregate 
indicators (e.g., heart rate or HRV).

Pulse rate (second resolution). While not considered as true ‘raw’ data, some wearables 
provide high-granularity pulse rate (i.e., the PPG equivalent for HR) data, up to 
second resolution. This is not to be confused with inter-beat intervals (IBIs) or PP 
intervals (i.e., peak-to-peak intervals extracted from PPG), discussed below (Section 
3.2.5).

The pulse rate from PPG is frequently referred to as 
HR. It is important to consider that these are not the 
original values recorded by device sensors, but pre-
processed data that have been elaborated based on 
predefined parameters. 

With the second resolution, pulse rate (or HR) HRV 
cannot be calculated.

Peak-to-peak intervals (PP-intervals; beat-to-beat resolution). PP intervals refer to the 
actual time intervals between consecutive pulses (heartbeats), and as such, cannot 
be reported at a fixed sampling rate (e.g., when HR is 60 bpm, there will be 60 IBIs in 
one minute). 

PP intervals are required and usually used to process HR and HRV measures in a 
certain time window (Section 3.2.5). Most wearable sensors use a 5-min window 
to compute HR and HRV during sleep and do not provide PP-intervals, as they 
might not be transmitted from the wearable to the app or software, to save battery 
power and bandwidth. In these cases, IBIs are processed directly in firmware (i.e., 
on the device, outside the control of the researcher), and possible artifacts are also 
discarded at this stage if artifact removal is present. In certain cases, PP-intervals 
might come with a signal quality estimate generated by the wearable manufacturer, 
to enable the researcher to assess the likelihood of having collected high-quality 
data.

Some wearables may refer to PP intervals (or IBIs) as 
pulse rate or HR on a beat-to-beat resolution. When 
no signal quality is reported, artifact removal should 
be used to clean the IBIs time series from potential 
issues, as PPG is particularly prone to artifacts. While 
conceptually the same as electrocardiography (ECG)-
derived RR intervals, PP-intervals, are not necessarily 
equivalent in the context of certain applications, 
such as HRV analysis. In particular, outside resting 
conditions in healthy individuals, changes in blood 
pressure might result in inconsistencies between HRV 
derived from PPG and ECG, despite the fact that both 
RR and PP intervals are generally called IBIs [31].

Electrodermal activity (EDA). EDA sensors (frequently named galvanic skin response 
or GSR sensors) are of growing popularity in wearable sensing technology. GSR 
data are used in modeling stress and mood, but also in sleep classification models. 
Specifically, the tonic (level) and phasic component (responses) of skin conductance 
are recorded by passing a weak constant voltage between two electrodes placed 
on the skin surface, and by applying low-pass filters (e.g., 5 Hz) to the resulting 
conductance values. In turn, such raw measurements (rarely accessible from 
consumer-grade devices) can be used to adjust sleep/wake and sleep stage 
classifications.

Raw EDA is rarely accessible, with similar implications 
to those highlighted for acceleration and BVP. When 
analyzing EDA, it is necessary to consider both its 
thermoregulatory (e.g., sweating, hot flashes) and 
non-thermoregulatory origins (e.g., cognitively/
emotionally induced arousal) depending on the 
application. It is important to note that EDA assessed 
at various body locations (e.g., finger, palm of the 
hand, wrist) may yield diverse outcomes and exhibit 
distinct relationships with the target processes of 
interest, such as stress.

Temperature. Some devices can also estimate variations in “core” and peripheral 
hemodynamic status based on measurements of skin temperature (i.e., the 
temperature recorded from the skin surface, oscillating around 32°C and 35°C 
within the 0.01–2.00 Hz range). Surface thermistors and infrared thermopiles 
are often used to collect such raw measurements, which are rarely provided by 
contemporary consumer-grade and research/clinical-grade devices.

Wearables may not report the temperature in absolute 
units but as relative changes with respect to a 
person’s previous day or night average, making 
single time point measurements of limited utility. 
Additionally, during the day, data from wearables is 
often confounded by environmental temperature, poor 
contact between the sensor and the skin, and other 
issues that might cause the data to be less reliable.
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performance metrics. The two key analyses to focus on are the 
Bland–Altman plots, which quantify the discrepancies between 
the device and the reference method in measuring the overnight 
aggregated measure of interest, and the epoch-by-epoch compar-
ison between the two methods.

Figure 2 shows two Bland–Altman plots [55]. In both plots, the 
x-axis represents the size of the measurement, that is the range 
of values over which any measurement can lie, based on the con-
sidered sample. This can be quantified either by computing the 
average between device and reference measurements [55] or, as 

Table 3. Aggregate sleep indicators

Sleep indicator Warning

High-granularity sleep/wake and sleep stage classification: While sometimes erroneously 
considered “raw data,” high-resolution (e.g., 30-s or 1-min intervals) aggregate sleep 
staging is commonly provided by wearables. This consists of the output of the 
classification models used by these devices based on the available features (e.g., 
acceleration, heart rate, temperature). Two main types of outputs are usually provided 
by wearables: sleep stages (light, deep, and rapid-eye-movement [REM] sleep) and 
dichotomous sleep/wake classification.

Although the availability of epoch-by-epoch sleep 
classifications allows for a more reproducible 
computation of aggregate sleep indicators, the 
algorithms are often undisclosed, and sometimes 
they are provided with a low sampling rate (e.g., 
1-min or 5-min epochs, rather than standard 30-s 
epochs).

Bedtime and wake-up time: Bedtimes and wake-up times are by definition subjectively 
reported behavioral indicators reflecting the time (hh:mm:ss) a person chooses to 
start trying to fall asleep and conclude their attempts at sleep, respectively. The 
time elapsed between bedtime and wake-up (time in bed, see below), is necessary 
for computing key standard indicators such as sleep onset latency, wake after sleep 
onset, total sleep time, and sleep efficiency. Although most devices provide automatic 
detection of the beginning and end of each “sleep period,” such automatically 
determined times are usually an approximation based on sleep onset and the last 
sleep-to-wake transition. Due to the limited evidence on the accuracy of these 
automatic classifications and the tendency for individuals to flank the time in bed 
period with nonmoving, resting wakefulness, they should be used with caution. Some 
devices also allow manual setting/adjusting of the period attempting sleep (e.g., 
by manually initializing and ending a sleep period or by post hoc adjusting these 
intervals). This might be the preferred choice for research and clinical applications.

Bedtime and wake-up time should only be used when 
self-reported or manually signaled by the users 
(e.g., by pressing a dedicated event-marker button, 
or by directly inputting the dedicated device app). 
When this is not possible, sleep diaries based on 
third-party applications, personal digital assistants, 
or paper-and-pencil questionnaires should be used 
instead. 

It is worth noting that event markers, as well as 
retrospective reports of bedtime and wake-up times, 
can also pose challenges, including potential issues 
like recall biases and difficulties in consistently and 
accurately pressing the marker.

Time in bed (TIB): TIB is defined as the time between bedtime and wake-up time and thus 
is subjectively determined and affected by the same considerations reported above 
for bedtime and wake-up time. Particularly, most consumer-grade as well as standard 
actigraphy devices that provide automatic estimates of TIB are actually outputting 
“sleep period” durations based on motion/activity thresholds, identifying the first and 
the last epochs classified as sleep.

TIB should be only referred to and used when bedtime 
and wake-up time are self-reported or manually 
signaled by the users. TIB is not the equivalent of 
the “sleep period” (typically reported from consumer-
grade devices).

Sleep onset (SO): SO refers to the time (hh:mm:ss) at which the person falls asleep 
(e.g., first wake-to-sleep transition) from a behavioral and physiological perspective 
(e.g., changes in motion, temperature, heart rate). In consumer-grade wearables, it 
is usually coincident with the onset of the “sleep period,” which is the first epoch 
classified as sleep.

SO operationalization should be confirmed by 
evaluating high-granularity (e.g., 30 s or 1 min) 
sleep classification data, to be identified as the 
timestamp corresponding to the first transition from 
wake to sleep. When included in data analysis, it 
can be operationalized as a continuous variable 
consisting of the time lag (minutes) from midnight 
(as a conventional arbitrary choice).

Sleep onset latency (SOL): SOL is the time interval (minutes) from the subjectively reported 
time at which the person starts trying to fall asleep (i.e., bedtime) to the objectively 
determined SO time. As highlighted above, both information are necessary to reliably 
measure SOL.

No device can provide SOL without a measure of the 
subjective determination of bedtime.

“Sleep period” duration: Based on the above considerations, “sleep period” duration is 
the nonstandard time interval (minutes) between SO and the last sleep-to-wake 
transition, as automatically determined by the device. Although not included in AASM 
standards [32], we argue that this indicator can provide useful information for most 
applications, provided that researchers and clinicians are aware of its differences from 
TIB.

As mentioned above, the “sleep period” is not 
equivalent to TIB. Some devices output multiple 
sleep periods at night, following proprietary logic. 
This segmentation may be incorrect. Procedures 
have been implemented to account for this potential 
issue [33].

Total sleep time (TST): TST is the total time (minutes) classified as sleep within a TIB 
or a “sleep period” interval. It is among the most widely reported parameters in 
performance evaluation studies, and one of the most widely used in both empirical 
investigations and clinical interventions. Among wearable outputs, TST demonstrates 
the most consistent definition, greatest “accuracy,” and least variation in accuracy 
across different devices.

The TST is mainly dependent on the TIB/ “sleep 
periods.” Please refer to those indicators for 
warnings.

Wake after the sleep onset (WASO): WASO is the total wake time (minutes) within a TIB (or 
a “sleep period”).

Some devices allow specifying “sensitivity” thresholds/
consideration of “small awakenings.” These settings 
affect the total amount of wake and should be 
carefully chosen based on the population under 
observation. 

The assessment of Wake After Sleep Onset (WASO) 
stands out as one of the primary limitations associated 
with actigraphy-based wearable sleep trackers, 
especially when considering their use in clinical 
populations with anticipated sleep disruptions.
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previously recommended for sleep-tracking performance eval-
uation [16], by simply considering the reference measurements 
(as exemplified in the figure). In contrast, the y-axis represents 
the differences between the device and the reference method. 
In most cases, the differences are computed as device–refer-
ence, implying that values above zero indicate overestimations, 
whereas values below zero indicate underestimations. In other 
cases, studies may report reference–device, implying an opposite 
interpretation regarding device overestimation/underestimation. 
Importantly, both variables are expressed in the original meas-
urement units (e.g., minutes for TST, % for SE), making the plot 
and the related metrics easily interpretable.

Figure 2A depicts the situation where the differences are 
evenly distributed over the size of the measurement. In other 
words, the estimated bias, that is the mean difference (device–
reference) across participants/nights, is predicted to keep the 
same value regardless of the measurement value (uniform bias). 
In such cases, it is possible to determine whether the bias is 
overall significantly higher (overestimation) or lower than zero 

(underestimation) based on statistical testing. In our example, 
the mean difference in total sleep time is 6.75 min, indicating a 
tendency to slightly overestimate total sleep time compared to 
the reference method. However, since the 95% confidence inter-
vals (CI) around the bias include zero (i.e., 95% CI = [−6.19% to 
19.69%] min) it can be concluded that, on average, device-based 
measurements do not significantly differ from reference-based 
measurements.

Figure 2B shows a different scenario where the bias is not 
uniform but rather proportional to the size of the measure-
ment. Specifically, it shows a negative proportional bias that 
only approaches zero for higher sleep efficiency measurements, 
whereas the device tends to overestimate sleep efficiency for 
measurements lower than 85%. In such cases, the bias can no 
longer be generally evaluated as significant vs. nonsignificant, 
because it strictly depends on the size of measurement, with 
important implications for certain device applications. For exam-
ple, such a device might be unsuitable for a clinical trial aim-
ing at evaluating an intervention to improve sleep efficiency. 
Considering a subject with a pre-intervention sleep efficiency 
lower than 85% and a post-intervention value of 95%, we cannot 
determine whether such a difference is due to the intervention or 
rather to the change in measurement error.

In addition to the mean bias, quantifying the systematic meas-
urement error implied by the device, both plots also show the 95% 
limits of agreement (LOAs). The 95% LOAs quantifies the random 
variability of the differences around the bias, or the limits within 
which most differences are predicted to lie [55]. Both bias and 
LOAs are critical to evaluate device performance. Indeed, a device 
showing an average difference close to zero but very large LOAs 
might not be useful for some applications as it might provide very 
inaccurate measurements for some subjects. In Figure 2, LOAs 
are represented by gray solid lines. Similar to the bias, LOAs are 
usually plotted with their 95% confidence intervals (CI) (gray 
dashed lines) and they can be either uniform (i.e., parallel to the 
bias line, as in Figure 2A) or proportional to the size of measure-
ment (i.e., narrower or wider LOAs for higher compared to lower 
measurement values), a condition termed heteroscedasticity. For 
instance, Figure 2B shows a device that tends to return more con-
sistent and less randomly varying differences for higher SE meas-
urements (negative heteroscedasticity), with similar implications 
to those considered above for proportional biases.

In summary, reading and correctly interpreting a Bland–
Altman plot requires considering several aspects of how the plot 

Sleep indicator Warning

Time spent in “light,” ‘deep’, REM sleep: Sleep stages are provided for multi-sensor devices 
with sensor configuration including accelerometry and photoplethysmography. The 
algorithms used to stage sleep from consumer devices are largely unknown. However, 
the known changes in heart rate and heart rate variability that characterize sleep 
stages likely inform the sleep-staging algorithms of sleep-tracking devices (though 
the actual features utilized remain proprietary). Some devices use additional features 
from other sensors (e.g., skin temperature) as well as non-physiological features to 
model the within-night distribution of stages. For example, other features may be 
included based on the neurophysiology of sleep (e.g., circadian regulation of stage REM 
sleep) that make assumptions about the user (e.g., “normal” circadian entrainment), 
which may result in bias and inaccuracies in edge cases. “Light sleep” is usually 
equivalent to polysomnography (PSG) N1 + N2 sleep, while “deep sleep” is considered 
the equivalent of PSG N3 sleep.

There are instances in which sleep stages are not 
provided by a device that typically provides them. 
These might include, for instance, excessively 
short sleep periods and low battery (e.g., causing 
the deactivation of some sensors or switching to 
reduced/intermittent sampling). In some cases, when 
sleep stages are not provided, a device still provides 
sleep/wake classifications or intermediate states 
(e.g., “restless” sleep). In these cases, it is currently 
advisable to use wake/sleep dichotomization only 
and treat intermediate classifications as wake. 

Sleep stage classification requires at least 
accelerometer and photoplethysmography (PPG) 
data. The use of an accelerometer sensor only is not 
sufficient to provide 4-level staging.

Table 3. Continued

Table 4. Aggregate circadian proxies

Circadian proxies Warning

Sleep midpoint: The time between sleep 
onset and end of sleep.

It is not typically provided 
as the default sleep 
output. It can be 
calculated using high-
granularity sleep/wake 
and/or stages data.

Rest-activity rhythms: Components of 
rest-activity rhythms often include 
amplitude (a proxy for the strength 
of the rhythm), mesor (mean level of 
activity), and acrophase (peak activity). 
These can be estimated with cosinor 
analysis or with nonparametric 
methods.

These typically 
require additional 
computations beyond 
what is typically 
available with standard 
actigraphy software.

Core body temperature minimum (CBTmin) 
and/or melatonin secretion onset estimates: 
Both CBTmin and melatonin secretion 
have been established as valid and 
reliable markers of SCN activity that 
also have physiological relevance to 
sleep and other functions.

These indicators are 
estimated from 
higher-order analysis 
of actigraphy data 
by mathematical 
models of the circadian 
system (e.g., www.
predictDLMO.com).
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was generated (e.g., the meaning of x- and y-axes, accounting for 
proportional biases and heteroscedasticity). Whereas the bias 
is probably the most immediately interpretable information, 
its interpretation without considering its trend over the size of 
measurement and the dispersion of the differences around it 
(LOAs) might be misleading.

Figure 3 shows examples of error matrices (or confusion matri-
ces), which are the main output of epoch-by-epoch analyses. Error 

matrices are cross-tabular representations of the total number 
or proportion of epochs classified by the device and the reference 
method in each of two (e.g., sleep vs. wake) or more categories (e.g., 
sleep stages). An error matrix can be obtained either by summing 
the total number of epochs in each classification category across 
participants/nights (absolute error matrix, shown in Figure 3A) or 
by dividing each value by the corresponding marginal frequency 
(highlighted in gray) and then averaging such proportions across 

Table 5. Aggregate activity indicators

Activity indicator Warning

Activity counts and steps: Most traditional sensors use accelerometers to derive activity counts, a 
unitless measure representative of motion. Activity counts are then used as the independent 
variable in the linear regression model developed to predict energy expenditure [48]. The 
typical limitations of these approaches are the following; the accuracy of the monitor is highly 
dependent on the activities used to develop the model and a single model does not fit all possible 
activities [49]. Additionally, activity counts might not be detected when motion is decoupled from 
the sensor location, e.g., when cycling while wearing a sensor at the hip or wrist.

Consumer wearables have moved away from activity counts and provide more intuitive metrics, 
such as steps. Similar to activity counts, steps are estimated differently by each manufacturer, 
and therefore not directly comparable. Additionally, sensor location will impact the derived steps, 
e.g., more steps might be detected when a participant is moving their hands if the sensor is a 
watch, wristband, or ring, while other physical activities might be underestimated (e.g., cycling).

Activity counts and steps suffer from 
similar limitations, i.e., the inability 
of a single sensor to capture a variety 
of body movements, often leading to 
underestimations of movement for 
certain activities (e.g., cycling, rowing, or 
activities with limited full body motion) 
and overestimation of movement for 
other activities (e.g., activities with a 
high level of hand or arm movement 
when using wrist-based sensors or 
rings). 

Steps across different devices may not be 
comparable.

Energy expenditure: Energy expenditure estimates are normally derived from accelerometer data 
or combining accelerometer and heart rate (HR) data. Accelerometers exploit the relationship 
between motion and calories burned. However, the limitations just discussed, still apply (e.g., 
the sensor might be placed in a location where motion is decoupled from energy expenditure, 
such as the wrist or hand during cycling). HR data could be used in these cases to exploit the 
relationship between oxygen uptake and HR and estimate energy expenditure more accurately 
during exercise. However, HR monitors typically provide low accuracy for energy expenditure 
estimation during sedentary behavior [50], given that HR is affected by many other factors 
(e.g., stress and emotions). Additionally, the relationship between oxygen uptake and HR 
is highly individual and would require individual calibration for optimal accuracy [51, 52]. 
Photoplethysmography (PPG)-HR estimate is per se problematic, particularly during activities, 
with inaccuracy due to the several sources of artifacts on the PPG signal (Table 1). Thus, despite 
the theoretical advantage of using HR data to estimate energy expenditure, estimates derived 
from watches, wristbands, or rings might be impacted by compounded errors due to the 
potential inaccuracy of PPG-derived HR, an important predictor of the energy expenditure model.

Energy expenditure estimations suffer from 
different limitations based on sensor 
location and types of signals used for 
the estimate (e.g., accelerometer only 
or combined accelerometer and HR). In 
most circumstances, energy expenditure 
estimates are of poor accuracy and 
have not been validated in different 
populations.

Table 6. Aggregate respiratory indicators

Respiratory indicator Warning

Breathing rate: Breathing rate is typically not measured directly by consumer 
wearables but is usually estimated from the photoplethysmography (PPG) signal 
based on respiratory sinus arrhythmia. As such, breathing rate is basically another 
pulse rate variability feature, looking at changes over a longer timeframe, with 
respect to the typical peak-to-peak features used in heart rate variability (HRV) 
analysis. Breathing rate estimation suffers from the issues reported in Tables 2 and 
7 in terms of PPG data quality, i.e., it can only be assessed reliably when there is 
limited or no motion.

Limited validations of breathing rate algorithms are 
available in the scientific literature, making it difficult 
to trust the output provided.

Oxygen saturation: Oxygen saturation (SpO2) is estimated by the ratio of the pulsatile 
and slow-varying component of the PPG signal.

PPG sensors utilized by wearable sleep-tracking 
technologies are distinct from medical-grade pulse 
oximeters given reflection/reflectance mode, green 
spectrum light, and location of placement; therefore, 
blood oxygen saturation measurements from such 
devices should be interpreted with caution.

Apnea-hypopnea index (AHI): The AHI is the number of apneas and hypopneas per hour 
of sleep with apneas and hypopneas identified by reductions in airflow measured 
by the nasal–oral thermistor and nasal pressure transducer. The AHI is used for 
objective confirmation of obstructive sleep apnea and has been adopted as a 
quantification of severity. Wearable-derived AHI is modeled from PPG signal [53, 54].

Studies that assess the ability of wearable AHI to 
approximate PSG AHI or distinguish between 
individuals with and without obstructive sleep apnea 
are limited. Furthermore, the limitations noted above 
for raw data and aggregate respiratory indicators 
derived from wearables can introduce inaccuracy and 
bias to wearable predicted AHI values.
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participants/nights (proportional error matrix, shown in Figure 
3B). Whereas the former provides an overall idea of classification 
performance, the latter is more informative of device classification 
metrics such as sensitivity (i.e., the proportion of reference-based 
epochs in a target stage/condition that are correctly classified by 
the device) and specificity (i.e., the proportion of reference-based 
epochs different than a target stage/condition that are correctly 
classified by the device), while accounting for individual variability. 
For instance, Figure 3B shows a device with an average sensitivity 
to “light” sleep of 79%, while showing that the remaining 4% of light 
sleep epochs are misclassified as wake (5%), “deep sleep” (6%), and 
rapid-eye-movement (REM) sleep (10%).

Epoch-by-epoch analysis can be considered as a more in-depth 
accuracy check than Bland–Altman plots. Whereas Bland–Altman 
plots are the first thing to look at, informing on-device perfor-
mance at a macroscopic level (overnight aggregate indicators), 
epoch-by-epoch analysis zooms in at a microscopic level (single 

epoch) to inform whether the device is actually doing what it 
claims to do, namely whether it accurately classifies epochs of 
sleep/wake. Finally, it should be noted that such analyses are 
usually conducted with a single-night research design, only pro-
viding a snapshot of device accuracy and not considering its pre-
cision over multiple measurements. Future studies should use 
 multi-night designs to cover such a lack of knowledge.

Detailed information and procedural steps in evaluating the 
performance of wearable sleep technology in terms of Bland–
Altman, epoch-by-epoch, and other analyses are provided 
elsewhere [14, 16, 25]. Particularly, a standardized analytical 
framework to evaluate the performance of wearable sleep track-
ers, including related open-source R-based codes and functions, 
has been recently published to facilitate studies that evaluate the 
sleep-tracking capabilities of wearable sleep technologies [16]. 
The same pipeline has been recently extended and implemented 
in Python [56].

Table 7. Aggregate cardiac indicators.

Cardiac indicator Warning

Heart rate (HR) or pulse rate (PR): HR is the frequency of heartbeats, resulting from heart 
contractions each minute, and it is commonly measured with an electrocardiogram. Most 
wearables measure pulse rate, i.e., the equivalent of HR when using photoplethysmography 
(PPG) technology. Pulse rate and HR can be equivalent under certain circumstances [160]. 
The HR signal, when measured at rest (e.g., during sleep), can be considered highly reliable 
and less artifact-prone with respect to HR variability (HRV). However, not only the accuracy 
but also the timing—or protocol—of the measurement should be assessed. Some consumer-
grade devices do not disclose or mix data collected during the day and during the night to 
provide a measure of “resting HR,” an approach that might be suboptimal, as not only the 
physiological response but also the participant’s behavior, will impact the data. Other devices 
use an approach that the authors would deem more accurate when it comes to assessing 
resting physiology, i.e., averaging the data for the entire night (e.g., Whoop or Oura). By taking 
a full average, changes due to the circadian rhythm and sleep stages will not add additional 
variability to the data, which is the case when using sporadic measurements or shorter time 
windows. During exercise, pulse rate tends to be of poor accuracy, for a number of reasons 
ranging from sensor positioning, fit, artifacts, and low signal-to-noise ratio [161]. Thus, pulse 
rate data should mostly be used when measured at rest, while heart rate data (e.g., from a 
Polar chest strap [162]) should be used for exercise measurements.

HR and PR measurements from wearables 
tend to be accurate when measured in 
motionless conditions, such as sleep. The 
same cannot be said of measurements 
during movement or exercise. Moreover, the 
timing of the measurement matters for data 
analysis and interpretation, whereas some 
devices tend to capture data in different 
ways (e.g., sporadically, using day and 
night data, using only night data). 

High-granularity HR data can also be 
accessible by some devices (e.g., second or 
minute resolution) and these data can be 
combined with sleep-staging data (30-s 
resolution) for more accurate averaging of 
HR across the time windows of interest.

HRV or pulse rate variability (PRV): HRV results from a number of factors, including 
parasympathetic modulation of heart rhythm, the baroreflex, mechanical stimuli, and 
hormones. When measured at rest, it is often used as a marker of parasympathetic 
modulation of heart rhythm in the context of the stress response (e.g., a stressor would 
cause a reduction in parasympathetic activity, reflected in a lower HRV, typically [163]). 
When it comes to measuring HRV, we have additional complexities with respect to HR. First, 
what wearables measure, using optical signals (PPG), is not HRV but PRV. While HR and 
pulse rate are equivalent, HRV (i.e., the electrical activity of the heart) and PRV (i.e., changes 
in pulse rate measured at the periphery, either the wrist, finger, or ear, normally) are not 
always equivalent. Measurements taken at rest in healthy subjects show an almost perfect 
correlation between HRV and PRV [160, 164], but this is not the case during exercise or in 
other populations [165] as pulse transit time and blood pressure might impact PRV and HRV 
differently. Secondly, the sampling window needs to be considered, similar to what we have 
discussed for HR. In this context, methods relying only on a few minutes of the night have 
shown to be unreliable (e.g., Whoop up to version 3 and Apple Watch, all versions [166]), 
while a better approach is to use the average of the entire night. 

Some wearables might provide researchers with additional tools able to extract not only PRV 
features, but also PP intervals (peak-to-peak intervals derived from the PPG signal), and 
therefore allow the researchers to compute additional features. 

Ideally, a wearable able to provide 5-min resolution HRV samples across the entire night or for 
at least 4–5 h during the night should be used in order to properly assess resting physiology 
during sleep. Sensors able to provide this type of data should be favored against sensors able 
to provide only sporadic measurements during the night or fewer data samples. Among the 
many HRV features that can be computed from RR or PP intervals, time domain features, and 
in particular rMSSD, should be favored when possible, due to their standardization and clear 
physiological interpretation.

Consumer-grade wearables report PRV as a 
surrogate of HRV, which can be considered 
a valid alternative under certain conditions 
(i.e., measurements in healthy participants 
at rest). The protocol and sampling strategy 
used should be carefully analyzed, as some 
consumer wearables provide sporadic data 
points that are typically vulnerable to noise 
and artifacts. Importantly, a single artifact 
over a 5-min window can dramatically 
change HRV and PRV [167]. Artifacts can 
derive from noise in the signal, e.g., motion 
disrupting the PPG waveform, or actual 
cardiac abnormalities, such as ectopic beats 
or forms of arrhythmia. In these cases, 
most wearables will not report any issues 
as signal quality metrics are not provided. 
Without access to an electrocardiogram, 
issues due to sensor malfunctioning, 
movement, or heart rhythm abnormalities 
are indistinguishable, and therefore care 
should be taken to assess the likelihood 
of such issues in the study population of 
interest.

Proprietary biomarkers without scientific or clinical comparator or relevance: Some consumer-grade 
devices provide aggregated metrics (e.g., global indices of sleep disturbances, general stress, 
and recovery/readiness scores) of unknown operationalization and questionable utility.

Metrics lacking standard definition and/or 
operationalization are of limited utility and 
should not be used in clinical and research 
studies.
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Overview of wearable devices performance
It is our position that any tools used in research/clinical settings 
require rigorous evaluation, i.e. comparison of sleep outputs com-
pared to gold-standard PSG. As an overall practical warning, there 
is an erroneous assumption that because a device is considered 
a research/clinical tool and “validation” studies are available, 
the data provided are “good.” For instance, traditional actigraphy 
has long been considered the gold standard alternative to PSG 
in non-laboratory settings, despite the low ability to correctly 
classify wake, which rarely exceeds 50%. In addition, we should 
not assume that the performance of contemporary research/
clinical-grade devices is “good” just because their intended uses 
are research and clinical applications. These devices should go 
through the same rigorous evaluation and receive the same level 
of scrutiny that is applied to consumer-grade devices.

It is essential to acknowledge the increasing prevalence of 
industry-sponsored performance evaluation studies, paralleling 
inherent challenges, and the limited feasibility of conducting 
unbiased, independent assessments within academic settings. 
While acknowledging the good faith of an investigator, to strike 
a harmonious balance between dependent and independent per-
formance evaluations, it is imperative to allocate research grants 
that specifically support impartial third-party evaluations. One 
effective approach could involve establishing supplementary 
grant mechanisms designed to facilitate and promote independ-
ent assessments.

While a review of the vast number of performance evaluation 
studies is outside the scope of this manuscript, we here provide a 

high-level overview of the current knowledge regarding the per-
formance of sleep-tracking wearable technology.

Importantly, within the realm of sleep and circadian research, 
we lack a standardized operational framework for defining the 
threshold of what would be deemed “adequate” to validate and 
endorse the use of a device. Additionally, despite the availabil-
ity of best practices in the evaluation and reporting of wearable 
sleep-tracking device performance [14, 16, 25, 56], some studies 
fail to adhere to these recommendations; therefore, the following 
should be interpreted with caution.

The sections that follow will discuss the capacity of wearable 
device-derived aggregate sleep parameters (as defined in Table 
3) to approximate the equivalent PSG values. High-granularity 
sleep/wake and sleep stage classification performance is reported 
if epoch-by-epoch comparison was undertaken and summary 
sleep indicator (e.g., TST) accuracy is cited if Bland–Altman plots 
(and associated values) were generated in the study. Studies that 
compare wearable device-acquired non-sleep parameters (e.g., 
pulse oximetry) to corresponding gold-standard measures have 
utilized heterogeneous study protocols and statistical reporting; 
therefore, the available performance measures are cited.

Sleep–wake differentiation and sleep staging
Traditional research/clinical-grade actigraphy

The performance of standard actigraphy has been repeatedly 
tested against reference standards (PSG) across different sam-
ples and conditions. Despite being currently referred to as the 
accepted alternative to PSG in a nonlaboratory setting, standard 

Figure 2. Examples of Bland–Altman plots. CI = confidence intervals; LOA = limit of agreement.
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actigraphy performance shows a profound limitation in wake 
assessment (referred to as low specificity in the binary sleep/
wake classification). The ability to correctly classify epochs of 
nocturnal wake rarely exceeds 50% (at a level of sensitivity, i.e., 
the ability to correctly classify sleep epochs, >90%) with perfor-
mance degrading as a function of the amount of wake time at 
night. Thus, the more wakefulness during the attempted sleep 
period, the less accurate the device is. The problem manifests in 
devices that can significantly underestimate wakefulness, poten-
tially by hours. This limitation restricts their utility within the 
demographic that could derive the greatest benefit from precise 
sleep assessment, namely individuals afflicted with sleep disor-
ders [57]. The low specificity of actigraphy is primarily due to the 
misclassification of motionless wake as sleep [37, 58].

Of note, to mitigate actigraphy’s problem of low specificity for 
wake, one group used 70 h of PSG data to enrich their training 
dataset with wake epochs such that wake and sleep epochs were 
equivalent. This technique improved classification to a more 
optimal trade-off between sensitivity (89%) and specificity (80%) 
though specificity deteriorated during testing on an independent 
validation set [59].

Consumer-grade devices

The ability of consumer-grade sleep-tracking devices to approxi-
mate sleep as defined by PSG was previously considered inferior to 
FDA-cleared actigraphy, primarily due to the lack of high-quality 
evidence [11]. However, a growing body of literature has revealed 
that multi-sensor consumer-grade, sleep-tracking devices can 
differentiate sleep from wake similar to or better than research/
clinical-grade actigraphy.

Epoch-by-epoch analyses reveal that overall, when consumer- 
grade devices (and their associated native algorithms at the time 
of the study) are compared to in-laboratory scored PSG, sensitiv-
ity for sleep is usually greater than 90%, while the sensitivity for 
wakefulness is relatively lower and more variable (ranging from 
20% to 70%). See [20, 25, 60–66], for reference.

Studies in adults that report mean bias between PSG and 
 consumer-grade device-derived summary sleep indicators typi-
cally demonstrate that devices overestimate PSG TST (by up to 
more than an hour), though some investigations demonstrated 
no significant bias, or an underestimation [60, 64, 66–68]. Device-
derived sleep onset latency (SOL) measurements display either 
no significant difference from PSG SOL or mean discrepancies 
(both overestimates and underestimates) of less than 15 min. 
PSG wake after sleep onset (WASO) is typically underestimated by 
consumer-grade devices (by up to an hour), though some investi-
gations demonstrated no significant bias or an overestimation of 
WASO [60, 64, 66–68]. In line with the observed misclassification 
tendencies, the discrepancy between PSG and consumer-grade 
device-measured SE displays greater magnitude differences 
in the overestimation (by up to 20%) than the underestimation 
direction [25, 60, 66]. These findings are distinct from those in 
the pediatric and adolescent population, where PSG TST may be 
underestimated and WASO overestimated by consumer-grade 
device output [61–63], though this was not always the case [69]. 
For both children and adults, proportional biases have been 
reported across indices of both sleep duration and disturbances, 
generally pointing toward a greater inaccuracy of the devices on 
nights with more disturbed sleep, a well-known recognized limi-
tation in the actigraphy literature [57].

Figure 3. Examples of absolute (A) and proportional error matrix (B) computed from epoch-by-epoch sleep staging comparison between a device and 
a reference method. In (B), proportions are reported as mean (standard deviation) (95% confidence intervals). REM = rapid-eye-movement.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/47/4/zsad325/7501518 by guest on 05 August 2024



de Zambotti et al. | 15

Epoch-by-epoch assessment of sleep staging demonstrates 
widely ranging accuracies, about 50%–90% for light sleep (PSG 
N1 + N2), and about 30%–80% for deep (PSG N3) and REM sleep 
derived from consumer-grade devices compared to PSG. Overall, 
devices have better and less variable performance for light sleep 
and REM sleep, compared to deep sleep. Currently, there are no 
clear performance trends for biases and proportionality of biases 
for sleep staging [20, 25, 60–66].

Importantly, while not always directly evaluated [66], there is 
a consistent trend indicating an overall improvement in perfor-
mance over time for consumer-grade devices.

Contemporary research/clinical-grade devices

Modern research/clinical-grade devices provide access to raw 
acceleration as opposed to automatic data reduction to activity 
counts [70]. Therefore, instead of using algorithms that use activ-
ity counts as an input, sleep–wake estimates can be derived from 
these devices by using existing software such as GGIR (https://
www.accelting.com/ggir-software/), an open-source R-package 
to process multi-day raw accelerometer data (m/s2). Given the 
flexibility in analyzing data derived from contemporary research/
clinical-grade devices, interpretation of performance evaluation 
studies that compare the output of these devices to polysom-
nogram must take into account the classifier and data cleaning 
methodologies used (e.g., sleep diary time in bed (TIB) versus 
algorithm determined sleep period time).

For example, wrist-worn raw acceleration analyzed with GGIR to 
differentiate between sleep and wake bounded by TIB determined 
with a sleep diary, demonstrated sensitivity of 91% and specificity of 
45% in the epoch-by-epoch analysis [71]. In that study, TST was over-
estimated by about 30 min. No assessment of other sleep parame-
ters or appraisal of proportional bias was available. When the same 
classifier (GGIR) was used without a sleep diary, instead employing an 
algorithm for sleep period detection, sleep onset, wake time, and sleep 
duration (measured at the right wrist) were not significantly different 
between the device and PSG in a sleep disorders population. However, 
sleep duration (left wrist) and SE were overestimated by 30 min and 
9%, respectively. With the use of the same methodology, but in a 
healthy population, sleep onset was underestimated by 20 min, but 
no other significant biases in sleep parameters were observed. In both 
groups, visual inspection of Bland–Altman plots (for sleep duration) 
suggested a negative proportional bias, that is at lower sleep dura-
tions, the error was larger (particularly when the device was worn on 
the left wrist). However, this was not formally tested. Sensitivity to 
detect sleep was 92% and 93%, in clinic-based and healthy sleepers, 
respectively and specificity was not reported [71].

A more recent investigation went a step further, applying the 
GGIR sleep classifier (both with and without sleep diary) and the 
Cole–Kripke algorithm (with the Tudor-Locke algorithm to measure 
sleep period time) to determine sleep parameters from a contem-
porary research/clinical-grade device and then compared outputs 
to PSG. GGIR analysis, with and without a sleep diary, overestimated 
PSG TST by 31 and 26 min, respectively. This overestimation was 
even greater (47 min) with use of the Cole–Kripke sleep–wake clas-
sifier within bounds set by the Tudor-Locke algorithm. Agreement 
between wearable device and PSG TST was poor (intraclass cor-
relation coefficient [ICC] = .27 to .44) across all three methods of 
accelerometry analysis. Longer SOL and wakefulness after sleep 
onset were associated with a greater overestimation of PSG TST. 
Sensitivity and specificity were not reported [72].

Despite differential methods, these findings are consistent 
with the tendency of motion-based sleep tracking to misclassify 
nonmoving wakefulness as sleep.

Machine learning analysis of data acquired with contemporary 
research/clinical-grade devices provides a novel methodology 
that may be superior to original algorithms to quantify sleep from 
raw acceleration data [73] and may even identify off-wrist time 
[74]. When the original van Hees sleep-staging algorithm and 
the random forest analysis of raw acceleration were compared 
again in a large data set of corecorded accelerometry and PSG, the 
epoch-by-epoch analysis revealed that the original method had 
better sensitivity but lower specificity than the machine learn-
ing algorithm (sensitivity = 84% vs. 78%, specificity = 48% vs. 56%) 
[26]. Mean biases between polysomnogram and device-derived 
sleep parameters were not provided.

Some multi-sensor contemporary research-grade/clinical 
devices have a nonsleep tracking primary indication (i.e., detec-
tion of obstructive sleep apnea (OSA), seizure detection). For 
these multipurpose tools, few publications are available describ-
ing their sleep-tracking capabilities compared to gold-standard. 
For example, the Belun ring, which records both accelerometry 
and PPG, is FDA-cleared for the detection of OSA but also pro-
vides TST estimates that are highly correlated with PSG (r = .95) 
[53]. Conversely, when compared to polysomnogram, cardiopul-
monary coupling employed by the Sleep Image device showed 
a kappa value suggesting weak agreement with conventional 
sleep staging (44%) but estimated a measure of cortical arousal, 
the cyclic alternating pattern, with a kappa value of 77%, which 
falls into the range of substantial agreement [75]. The Empatica 
E4 (as well as the new model EmbracePlus), contains PPG, elec-
trodermal activity, and an infrared thermophile in addition to 
a triaxial accelerometer; however, the investigation assessing 
its sleep-tracking capabilities compared to PSG used only the 
 actigraphy-based sleep algorithm that demonstrated 96%–97% 
sensitivity and 39%–40% specificity [76].

Circadian measures
The utilization of wearables to track circadian measures is still a 
relatively new development, and as such information regarding 
its performance is still emerging. Except for a few recent stud-
ies, much of the extant literature has only tested performance in 
healthy adults with minimal sleep and circadian disruption. In 
studies with healthy adults, the mean absolute error (the differ-
ence between the measured value and the “true” value) has typi-
cally fallen within 2 h [77, 78]. One validation in a sample of fixed 
night shift workers with significant circadian disruption found a 
mean absolute error of 2.9 h, suggesting that these methods could 
be valuable in populations of clinical interest and relevance [46].

Despite being more novel, this is a rapidly growing area where 
we are likely to see continued improvements in performance. 
One promising mechanism may be the integration of multiple 
data sources (e.g., HR, temperature) and analytics as methods 
to improve the performance of wearables in tracking circadian 
measures. Further research regarding the accuracy required for 
interventions is also needed.

Respiratory parameters
The inclusion of PPG sensors in consumer-available, wearable 
sleep-tracking technologies allows for the computation of res-
piratory rate (RR) and apnea-hypopnea index (AHI, reflecting 
the number of apneas and hypopneas per hour of sleep) during 
sleep (Table 6). More recently, blood oxygen saturation meas-
urement has become available [79]. Studies on the accuracy of 
these parameters compared to the gold standard are available, 
but more limited in number than assessments of sleep-staging 
performance.
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Respiratory rate

Venous fluctuations during respiration result in low-frequency 
alternating current oscillations superimposed on the direct cur-
rent baseline signal of PPG, allowing for quantification of RR [80, 
81]. One investigation compared the RR measured by wearable 
sleep-tracking technology to respiratory inductance PPG dur-
ing PSG and reported bias and precision error of 1.8% and 6.7%, 
respectively [82]. Similarly, another investigation demonstrated a 
high correlation (r > .90) between consumer-grade wearable and 
PSG-derived RR [83]. Notably, consumer-grade wearable tracking 
of RR was leveraged during the COVID-19 pandemic and demon-
strates the potential public health ramifications of these devices 
during times of scarce resources [84].

Blood oxygen saturation

When tested in healthy individuals and those with chronic lung 
disease, the Apple Watch Series 6 displayed a strong correlation 
with fingertip pulse oximetry (r = .81) [85]. Skin color, wrist cir-
cumference, and the presence of wrist hair were not predictors 
of differences in readings from the devices [85]. A systematic 
review of oxygen saturation derived from the Apple Watch Series 
6 reported LOAs from ±2.7%–5.9%, though outliers of 15% were 
reported [86]. Setting permissible error at 3% below or above 
readings from an ear lobe pulse oximeter, the Garmin Forerunner 
245 had a 50% error rate that increased to 80% at altitude [87]. 
Importantly, at lower oxygen saturations, a greater error was 
observed [87].

However, a great deal of uncertainty surrounds the accuracy of 
even medical-grade PPG in measuring blood oxygen saturation. 
If an FDA-cleared pulse oximeter reads 90%, true blood oxygen 
saturation, measured by arterial blood gas (ABG), is between 86% 
and 94% (https://www.fda.gov/medical-devices/safety-commu-
nications/pulse-oximeter-accuracy-and-limitations-fda-safe-
ty-communication; Accessed June 15, 2023). Therefore, ABG is 
considered the true gold standard for assessing blood oxygen 
saturation. At high altitude, compared to ABG, the Garmin Fenix 
5X Plus displayed an ICC of .55 (ICC < .50 and ICC > .80 are consid-
ered poor and good reliability, respectively). The mean absolute 
percent error was 9.8%, and the mean oxygen saturation differ-
ence was 7% [88].

The differences observed when comparing oxygen satura-
tion measurement from wearable sleep-tracking technologies to 
medical- grade methods are not only statistically significant but 
clinically significant. Therefore, this output should not be relied 
upon for medical decision-making [1].

AHI

Data from PPG and accelerometry have also been modeled to esti-
mate the AHI, allowing for the identification of the presence and 
severity of OSA from wearable sleep-tracking technologies.

A deep learning algorithm applied to wrist-worn PPG and 
accelerometer approximated PSG AHI well, with a weighted 
Cohen’s kappa = .51 and stratified individuals into OSA severity 
classes (area under the receiver operating characteristic curve of 
.84, .86, and .85 for mild, moderate, severe OSA, respectively) [54].

More recently, SpO2 data has been included as input to AHI 
estimation algorithms. For example, the use of both cardiac and 
oximetry measurements from the PPG (along with accelerometer) 
of a consumer-grade device allowed algorithm prediction of OSA 
(AHI ≥ 5) with accuracy, sensitivity, and specificity of 81.1%, 76.5%, 
and 100% [89]. A ring device that includes an FDA-cleared oxime-
ter utilizes a neural network applied to ring-acquired oximetry, 

pulse rate, HRV, accelerometer, and PPG waveform data to predict 
TST and AHI [90]. The comparison of ring-estimated AHI corre-
lated highly with AHI collected during PSG or home sleep apnea 
testing. Accuracy, sensitivity, and specificity in categorizing indi-
viduals with AHI ≥ 15 were .81 [95% CI, 0.70% to 0.89%], .93 [95% CI 
0.77% to 0.99%], and .74 [95% CI, 0.59% to 0.85%], respectively [90]. 
Given the relevance of OSA for daytime function, management 
of certain chronic conditions, and risk of incident disease (par-
ticularly cardiovascular) [91], the lack of high-quality evidence 
regarding the ability of consumer-grade wearables to detect OSA 
prevents their use as a diagnostic tool.

Oxygen desaturation index (ODI) can represent an estimate 
of the AHI and ring-derived ODI demonstrated good correlation 
(r = .91) and close agreement with PSG AHI allowing for classifi-
cation of OSA with a sensitivity of 87% and specificity of 83% [92].

The above examples demonstrate the capacity of consumer- 
available, wearable sleep-tracking technologies to estimate res-
piratory parameters, which makes these devices potential clinical 
tools. However, caution must be used, particularly when inter-
preting oxygen saturation and derived parameters.

HR and HRV measures
Less is known about the performance of wearables in measuring 
HR and HRV during sleep (e.g., nocturnal HR and HRV measures). 
Overall, there is a general consensus that the performance of PPG-
based devices in the assessment of HR and HRV (usually ECG) is 
higher during sleep compared to during wake. This is largely driven 
by the low level of motion occurring during sleep, with motion being 
a major confounder in PPG sensor readings [1, 24].

In an interesting recent work from Miller et al. [93], the authors 
evaluated sleep HR and HRV measures from different wearable 
devices and compared them to gold-standard ECG. In that study, 
the Apple Watch S6 overestimated HR by an average of .5 beats 
per minute, had a mean bias of 1.5 beats per minute, and an 
intraclass correlation of .96. Similar performances were shown 
by Polar Vantage V, OURA Gen 2, and Whoop 3.0 devices, while 
Somfit devices showed the poorest performance. These outcomes 
are not too dissimilar from those provided by others and by ear-
lier studies evaluating previous-generation wearable devices [62, 
69, 94, 95]. Thus, HR estimates from wearable devices, particu-
larly when averaged across the entire or extensive sleep periods, 
seem to have reasonable accuracy. On the other hand, except for 
Whoop 3.0, Miller et al. [93] showed less convincing data support-
ing the accuracy of PPG-based wearable technology in HRV (root 
mean square of successive differences between normal heart-
beats) estimation, an area requiring further exploration.

Biases in data derived from performance 
evaluation studies and limitations in the real-
world use of wearable sleep-tracking technology
While several performance evaluation studies do exist and more 
are upcoming, the available data supporting the performance of 
wearable devices are biased toward specific conditions, instru-
mentation, and patient populations. To maintain rigor and repro-
ducibility, performance assessments compare the sleep output 
of wearable devices to manually scored in-laboratory PSG in 
carefully controlled study protocols; however, for ease and cost 
containment, these studies typically span only a single night and 
often use a limited convenience sample (participants of an ongo-
ing study not specifically designed to test the performance of a 
wearable device, e.g. adults presenting to the clinical sleep lab-
oratory for suspected sleep apnea at an academic center). It is 
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important to also consider that, as previously outlined by others 
[24], several factors can affect device performance (e.g., individ-
ual characteristics, environmental conditions), particularly for 
devices using features from multi-sensor signals for their sleep 
classification algorithms. For example, PPG readings are well 
known to be impacted by user characteristics (e.g., skin tone and 
thickness, hair, and ability to securely wear the device). Gender, 
tattoos, body temperature, RR, pressure, motion, and ambient 
light can also impact PPG recording and therefore, can introduce 
errors into sleep parameters derived from PPG signal [80, 96]. The 
dependency of EEG-based sleep stages on cardiac autonomic 
responses can also be affected by individual characteristics, dis-
ease conditions, and medication use (for example [97]). Therefore, 
published data on wearable performance may not directly trans-
late to individuals of different races and ethnicities or patients 
with heterogeneous sleep and medical conditions across a variety 
of ages.

Additionally, there is limited evidence of sleep-tracking capa-
bilities during sleep outside the main sleep bout (e.g., daytime 
sleep and naps) and the reliability of sleep estimates over numer-
ous days and physiological conditions (e.g., alcohol use, acute 
illness) remains unclear. Furthermore, performance metrics are 
specific to use with the manual designation of TIB and may not 
be translated to different sensor hardware, firmware, and soft-
ware. It is also important to consider that the availability of new 
consumer-grade devices and models outpace the traditional 
route to scientifically evaluate them. Thus, performance data for 
a specific device and model is available when a device may be no 
longer available.

The following sections discuss some considerations when 
translating laboratory-cited performance to real-life use of 
consumer- grade sleep-tracking devices.

In-lab evaluation versus free-living use, and TIB estimation
Most of the literature that compares a device’s performance 
against reference standards is derived from highly controlled, 
in-laboratory studies as opposed to the free-living condition, 
which is the intended use of these devices. For example, the utili-
zation of single-night PSG with enforced TIB (specified lights out, 
lights on) under the supervision of trained personnel limits the 
translation of the cited performance metrics to the real world.

Calculated summary metrics such as TST, SOL, WASO, and SE 
(Table 3 for definitions) are contingent not only on the device and 
associated algorithm’s ability to differentiate sleep from wake 
but also on TIB gated by bedtime and rise time. During the lab-
oratory comparison of a consumer sleep-tracking device to PSG, 
bedtime, rise time, and TIB attempting sleep are clearly deline-
ated; however, in the free-living environment, sleep period time 
(as opposed to TIB; Table 3) is used and determined automatically 
by the device. If incorrect (e.g., sleep period start is designated by 
the device when an individual is watching TV on the couch and 
not actively attempting sleep), the accuracy of summary sleep 
metrics would be expected to suffer even if the sleep–wake clas-
sifier displays high sensitivity and specificity compared to PSG. 
However, minimal literature is available to support or refute this 
theory.

One study of the WHOOP device tested performance (compared 
to PSG) when the device used manual input versus automatically 
detected TIB [98]. WHOOP sleep parameter estimates with auto-
matically detected TIB significantly underestimated polysomno-
gram light (−9 min) and deep sleep (−16 min) without statistically 
significant biases between device and polysomnogram-measured 

TST, wake, and stage REM sleep. WHOOP sleep parameter esti-
mates with manually designated TIB significantly underesti-
mated polysomnogram wake time (17 min) without statistically 
significant biases between the device and polysomnogram- 
measured TST, light, deep, and stage REM sleep. Additionally, 
when sleep classifiers were applied to the same contemporary 
research/ clinical-grade wearable device, both with and without 
the use of sleep diaries, agreement with polysomnogram TST was 
poor (ICC = .27 to .44) regardless of the analysis method [72].

In an attempt to eliminate the need for sleep diaries, a heu-
ristic algorithm was developed. The algorithm detected the 
“sleep period time-window” (which begins with sleep onset and 
ends with the final awakening) with accelerometry data in the 
absence of a sleep diary with a mean difference in duration of 
2 min compared to PSG in healthy sleepers [71]. Other algorithms 
to estimate TIB from accelerometry data alone also show prom-
ise in maintaining completely passive sleep tracking by consumer 
wearable devices [99].

Research protocols can include a self-report measure of TIB 
(e.g., digital sleep diary) and investigators may use this subjec-
tive information to clean data before the calculation of sum-
mary sleep metrics. However, the inclusion of bedtime and rise 
time may introduce bias from the participant, which may vary 
depending on different factors such as the presence or absence 
of sleep disorders [100]. Additionally, data cleaning itself could 
introduce bias and inaccuracies given the multitude of decision 
points in this process.

Proprietary scores or metrics such as “restless sleep”, “sleep 
disturbances”, or “readiness” are often output from wearable 
sleep-tracking devices and do not have a comparable clinical and 
scientific measure. Therefore, the accuracy and relevance of such 
scores remain unclear.

Changes and updates in device types, models, and 
algorithms
Rapid changes in device models, firmware and software of 
consumer- available, wearable sleep-tracking technologies may 
impede the translation of laboratory performance metrics to the 
field. Although actigraphy software does not remain static either, 
FDA-cleared actigraphs typically disclose sleep-classifier algo-
rithms and require the user to manually update the software ver-
sion, providing transparency. Conversely, consumer-grade device 
manufacturers use black-box algorithms based on artificial intel-
ligence to stage sleep and do not typically provide details regard-
ing algorithm development, testing, or the potential changes in 
performance that may arise from algorithm updates during use 
in the field. Conversely, machine learning can confer significant 
advantages in sleep tracking, for example, adapting to an indi-
vidual’s data to improve performance. This capability was lever-
aged to compare “generalized” and “personalized” sleep-staging 
algorithms. The “personalized” sleep classifier was superior to the 
generalized algorithm with sensitivity of 94% and 93% and speci-
ficity of 70% and 83%, respectively [65].

Studies that describe the development and testing of 
investigator- initiated sleep-staging algorithms adapted to off-the-
shelf consumer-grade devices are limited (given manufacturer 
restrictions on providing raw data to investigators) but available. 
Scientific teams have developed algorithms (typically utilizing 
machine learning) that can categorize sleep from signals derived 
from the Fitbit [101], Apple Watch [13, 102–104], Oura ring [102, 
105], Amazfit [106], and the Microsoft Band [107]. This type of work 
holds significant promise to increase the rigor, reproducibility, 
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and transparency of research with consumer-available, wearable 
sleep-tracking technologies given the disclosure of demographic 
characteristics in training datasets, algorithm features, and other 
details of algorithm development. To further increase reproduci-
bility and transparency, some study teams have even made code 
for their algorithms open source [13, 103, 104, 106].

Device-agnostic open-access algorithms for processing wearable 
“raw data” and classifying sleep and other variables of interest are 
upcoming. Additionally, code to translate raw acceleration data into 
activity counts [29, 108] may be beneficial in harmonizing data sets 
where sleep was recorded with traditional research/clinical-grade 
devices with those that utilize contemporary research/clinical-grade 
devices as well as consumer-grade devices given the current acces-
sibility of Apple Watch and Fitbit acceleration data. Notably, large 
public datasets (e.g., Multi-Ethnic Study of Atherosclerosis) of 
 co-recorded actigraphy and PSG have been leveraged for both 
algorithm training and testing with the rationale that together, 
actigraphy and PSG sleep measurement modalities derive similar 
parameters (activity counts and PPG pulse/PRV from the pulse oxi-
meter) that are recorded in a single consumer-grade device along-
side an annotated gold-standard [13, 109, 110]. Though an excellent 
use of existing data, the ability to translate algorithms developed 
with traditional methods to consumer-grade devices remains 
uncertain [111] and rigorous, reproducible development and testing 
of sleep-classifier algorithms at scale are expected to benefit from 
large, public datasets composed of raw acceleration signal and PPG 
data acquired from consumer-grade devices co-recorded with PSG 
in heterogeneous patient populations. Independent testing data sets 
(not just hold-out data from the training data set) should be used 
to ensure generalizability. With appropriate disclosure of character-
istics of the dataset, open-source code, and performance reporting, 
researchers could build a library of algorithms appropriate for use in 
different patient groups.

Study setting and assessment conditions
Device placement
Reflective PPG on the wrist may be a problem when placed by the 
patient/subject given increased movement artifact that was not 
present in the performance assessment study when the device 
was appropriately secured by a lab staff member.

Specific to oxygen saturation readings, in addition to reflec-
tive/reflectance technology (as opposed to transmissive/
absorptive used by medical-grade oximetry) the location of 
consumer- available, wearable sleep-tracking technologies may 
be problematic [112]. Medical-grade PPG is placed on physical 
locations with dense vascular beds (i.e. fingertip, ear lobe) while 
consumer-available, wearable sleep-tracking technologies utilize 
sensors at the dorsum of the wrist or finger. These areas are more 
prone to movement between the sensor and anatomical location, 
less vascular, contain hair, and are known to result in less accu-
rate oximetry readings [80, 112]. Additionally, acceleration data 
may also be impacted by placement, given the observation that 
proximal versus distal actigraphy placement on the wrist resulted 
in sleep parameter discrepancies [29].

These multiple sources of error that could arise due to real-
world device placement may reduce the performance cited in 
studies where device placement is consistent.

Sleep bouts outside the main sleep period (daytime/naps)
Short sleep bouts detected outside the main (typically nocturnal) 
“sleep period” pose a variety of challenges in the translation of 
laboratory-measured performance. Firstly, the wearable device 
algorithm has to recognize that sleep is being attempted dur-
ing the day or outside the usual time (i.e., TIB period must be 

appropriately designated during an atypical interval). Additionally, 
daytime sleep or sleep outside the main sleep bout is often dif-
ferent in sleep stage breakdown and is likely to have increased 
WASO. Such inherent differences in sleep, and the predilection for 
wearable sleep trackers that use movement to misclassify non-
moving wakefulness as sleep, can render summary measures less 
accurate than during the main sleep bout. Indeed, this has been 
demonstrated with the use of traditional actigraphy [113, 114].

The ability of consumer-grade wearable devices to capture 
daytime sleep has been evaluated both in the sleep lab and at 
home. In a 3-day laboratory study, compared to PSG, the FitBit 
correctly identified only 6 of 20 daytime naps (24 of 30 nighttime 
sleep periods correctly detected) [115]. Using sleep logs as the 
reference standard in individuals self-selecting their sleep–wake 
schedules at home, the percent of missed daytime sleep episodes 
were noted for the following consumer-grade sleep- tracking 
devices: Fatigue Science: 3.6%; Fitbit: 4.8%; Oura: 6.0%; Polar: 
37.3%. Missed episodes were most likely to occur when the day-
time TIB period was short, demonstrating the limited capacity for 
consumer-grade sleep-tracking devices to track naps.

Daytime sleep may also occur in the context of shift work; 
though consumer-grade wearables have been assessed in shift 
workers, captured sleep was during the night [94]. Therefore, the 
ability of consumer-grade devices to provide sleep estimates in 
individuals who work shifts or have circadian rhythm sleep–wake 
disorders remains unknown.

Single versus repeated nights of recording
The intended use of consumer-grade wearable sleep-tracking 
devices is in the home environment over days, weeks, months, 
and beyond. However, studies comparing the output of consumer- 
grade wearable sleep-tracking devices to PSG take place during a 
single night of recording; therefore, the reliability of cited perfor-
mance metrics over multiple nights remains unclear.

However, emerging work has addressed this issue by utilizing 
home PSG/EEG over multiple (3–14) nights [66, 116, 117]. Of note, 
a week of co-recorded multichannel dry EEG (embedded in a 
headband) and 4 consumer-grade wearable devices revealed that 
device output aggregate parameters dependent on sleep–wake 
differentiation (TIB, TST, SE, sleep latency, and WASO) approx-
imated ground-truth (here, EEG defined sleep) better on nights 
with higher SE [117]. These findings are not surprising given the 
high sensitivity and low specificity of these devices. Sleep staging 
(light, deep, REM) was highly variable across nights [117]. These 
findings highlight the potential discrepancies between laboratory 
and real-world performance.

Bed partners, children, and pets
While sleep during performance assessment studies takes place 
with the participant sleeping alone in the bed of the sleep labora-
tory, sleep at home may take place in a bed shared with another 
human or pet. Although unknown, theoretically, this could impact 
the movement-based assessment of sleep.

Notably, in an actigraphic study of bed sharing with dogs, a 
significant positive relationship between human and dog move-
ment over sleep periods was found, with dogs influencing human 
movement more than humans influencing dog movement. Dog 
movement tripled the likelihood of the human transitioning from 
a nonmoving state to a moving state [118].

Sample demographics and characteristics
Age

Sleep-staging performance of consumer-grade wearable devices 
does not necessarily generalize to age groups outside the pop-
ulation the assessment took place in, as changes in physiology 
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across the lifespan may impact accelerometer and PPG-acquired 
measurements during sleep [96, 119]. Performance assessments 
of consumer-grade sleep-tracking devices have largely been in 
adults. However, a few investigations have evaluated performance 
in children (as young as 3 years of age) and adolescents [62, 120]. 
Recent publications cite higher specificity, the proportion of true 
wake correctly identified by the device and algorithm, in adoles-
cents than typically observed in adults (68% and 88%–89% for the 
Fitbit Charge 3 and Oura ring, respectively) [63, 121]. As expected, 
the performance of multi-sensor devices in estimating sleep in 
children and adolescents exceeds that of early models of con-
sumer sleep-tracking devices that only measure movement [122]. 
Sleep-staging performance (light, deep, REM) varies widely as in 
adults [63, 121].

Developmental and age-relevant contextual factors should be 
acknowledged when using wearable technology to track sleep in 
children and adolescents. Sleep patterns and behaviors undergo a 
significant transition from childhood to adulthood, driven by bio-
logical changes. In childhood, homeostatic sleep drive is greater 
and reflected by longer sleep duration with a greater proportion of 
slow wave sleep. Multiple sleep bouts (naps) and sleep outside the 
child’s own bed could also influence the performance of wearable 
sleep-tracking devices. As children transition into adolescence, 
their circadian rhythms delay and their homeostatic sleep drive 
decreases, leading to later bedtimes and a preference for later 
wake times. However, early school start times can result in sleep 
deprivation when superimposed on these physiological changes. 
Based on biological changes, the recommended sleep durations 
for age groups are as follows: 10–13 h for ages 3–5 years, 9–11 h 
for ages 6–13 years, 8–10 h for ages 14–17 years, 7–9 h for ages 
18–64 years, and 7–8 h for > 65 years [123].

Across adolescence, sleep macro- and micro-structure undergo 
profound changes thought reflecting brain maturation processes, 
including a 40% reduction in slow wave activity (or N3 sleep), 
which is also reflected by a steep decline in Delta power (.3 to 
4 Hz) [124]. In the trajectory from childhood to older adulthood, 
stage REM and N3 sleep proportions decline sharply with mod-
est increases in N1 and N2 and greater increases in WASO [125]. 
However, various factors such as work demands, stress, social 
factors (e.g., parental influences on children’s sleep schedules), 
and reproductive stage (e.g., menopause share uniqueness in the 
characterization of sleep with menopause core symptoms, i.e., 
hot flashes, directly disrupting women’s sleep [126]) and lifestyle 
choices can affect the sleep patterns. Overall, the evolution of 
sleep across the lifespan reflects the complex interplay of bio-
logical, psychological, and environmental factors. Understanding 
these changes is crucial when considering the use of wearable 
sleep tracking in specific age populations.

The complexity of sleep assessment is further compounded 
by developmental and sex-specific variations in cardiac function, 
a critical input to wearable devices in sleep staging. These var-
iations interact intricately with a myriad of age-dependent and 
independent biopsychosocial factors, such as activity levels and 
lifestyle choices. Research conducted by de Zambotti et al. [127] 
has shed light on some of these intricacies. They observed signif-
icant age-related declines in HR among boys during adolescence, 
while no such trend was observed in girls (increasing male- 
female HR difference of ~2.4 beats per minute each year). Results 
were partially explained by age- and sex-dependent changes in 
the pattern of activity. In the same study, within-night trajecto-
ries in cardiac function exhibited sex-divergent patterns, with 
boys experiencing more pronounced increases in HRV compared 
to girls. Moreover, evidence like cardiac dependencies to sleep 

stage transitions used by wearables to differentiate sleep stages, 
including non-rapid-eye movement sleep HR differences, were 
notably more prominent in girls (~3.9 beats per minute) than in 
boys (~2.4 beats per minute). These intricate nuances represent 
just a fraction of the multifaceted factors that can influence the 
performance of wearable sleep monitoring devices.

It is also noteworthy that most consumer-grade sleep-tracking 
devices are designed for adults; therefore, significant differences 
in wrist (and finger) circumference and length without propor-
tional changes to the device may result in sensor positioning 
disparate from that observed when an adult uses the device; 
however, as an example, the Fitbit Charge HR is designed to fit 
wrists that are 5.4 to 8.7 inches in diameter (inclusive of the aver-
age wrist size of children as young as 3 years of age) [62]. For very 
young children and infants, device placement is often on the 
ankle or calf [128]. Additionally, though not definitively known, 
algorithm training of the sleep classifiers used by consumer- 
grade devices likely takes place in adults and may not translate 
to the motion and cardiac physiology observed in pediatric sleep, 
though the stronger parasympathetic activity during sleep in 
children may result in improved sleep classification performance 
[120]. Furthermore, there are specific pediatric scoring rules 
from 2 months post-term through 18 years of age [129], which 
require different annotations of the gold standard used for train-
ing of algorithms used to classify sleep children and adolescents. 
Finally, children are more likely to nap and may sleep in a moving 
context (e.g., stroller) further augmenting potential inaccuracies 
of wearable sleep tracking [128]. Therefore, though performance 
assessments in the pediatric population are available, caution 
should be taken in children.

Further evaluation of the performance of consumer-grade 
sleep-tracking devices in pediatric as well as elderly populations 
and, if indicated, the ability to select different sleep-staging algo-
rithms based on age may enhance the accuracy of such devices.

Skin tone and skin thickness

Through melanin’s absorption of light, decreased signal intensity 
is observed when photoplethysmography is recorded in individu-
als with dark skin tones. As noted previously, given superior sta-
bility in the context of motion, green light is typically used by 
PPG sensors in consumer-grade devices and is more vulnerable to 
melanin absorption than red and infrared light [112]. Additionally, 
increasing skin thickness, which is directly correlated with body 
mass index (BMI), also dampens PPG signal [96]. One investigation 
demonstrated that together, increased BMI and skin tone caused 
signal loss of up to 61.2% in consumer-grade wearables [130].

When the accuracy of direct PPG measurements is reduced, 
noise is introduced into outputs from consumer-grade wearable 
devices that utilize PPG as an input (e.g. sleep and HRV parame-
ters) [1, 24, 131]. Therefore, the performance of consumer-grade 
sleep-tracking devices cited from studies in nonobese, light-
skinned individuals may be superior to what is observed when 
the same device is used in individuals with obesity or dark skin 
color. The differential accuracy of consumer-grade wearables has 
raised the concern that digital health solutions may reinforce 
existing disparities in care [132].

Sleep disorders

Outside of traditional research/clinical-grade actigraphs, only a 
few modern, consumer-grade wearable sleep-tracking devices 
have been evaluated within an adult sleep-disordered population. 
To our knowledge, performance evaluations have been conducted 
in conditions including insomnia disorder [133–135], OSA [136, 
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137], central disorders of hypersomnolence [138], and frequency 
of leg movements during sleep [67]. These performance studies 
rarely include or are compared to a reference group of normal 
sleepers, which makes it challenging to determine performance 
alterations specific to a distinct sleep disorder.

In their evaluation of a consumer-grade sleep tracker and PSG, 
Kang and colleagues [133] identified a significant divergence in 
performance abilities for a consumer-grade sleep tracker when 
applied in good sleepers versus patients experiencing insomnia 
[133]. Acceptable agreement between a consumer-grade sleep 
tracker and PSG was significantly more common in good sleepers 
(82.4% displayed acceptable agreement) than in patients experi-
encing insomnia (39.4% displayed acceptable agreement). While 
poor performance of wearable devices in clinical populations 
with sleep disorders may be expected and driven by a possible 
dependency of device performance on sleep continuity character-
istics (e.g., reduced accuracy with increasing WASO and awaken-
ings and decreasing SE), this requires further confirmation.

Unlocking the full potential of these devices, both for research 
and clinical purposes, requires increasing the empirical attention 
toward rigorous evaluations of wearable sleep-tracking devices in 
sleep disorder populations. Presently, there are still major gaps in 
knowledge on how these devices will perform in response to notably 
atypical sleep. For example, it is unclear whether consumer-grade 
devices can capture sleep onset rapid-eye-movement sleep epi-
sodes, which is a distinguishing sleep characteristic of narcolepsy. 
As such, there is a major need for future evaluations performed over 
samples including a diverse collection of sleep disorders, as well as 
good sleepers, to better clarify sleep disorder-specific device abilities.

Medical conditions

Use of consumer-grade wearable sleep-tracking devices in indi-
viduals with medical conditions that impact HR, HRV, or motion 
during sleep (e.g., atrial fibrillation, patients with pacemakers, 
spinal cord injury patients) may render sleep outputs that do not 
approximate PSG parameters as expected based on performance 
assessments in healthy individuals. For example, individuals with 
pacemakers may display fluctuations in the P–P interval (derived 
from PPG recording) that are not accompanied by R–R interval 
changes [20]; this may interfere with sleep staging based on pulse 
rate variability.

Considerations when integrating wearable 
devices into research
Study protocol design and device setup
Depending on the type of device selected for the study, differ-
ent steps might be necessary for properly setting up a study. In 
this section, we outline several examples of critical steps to be 
taken for successfully implemented wearables use in clinical and 
research studies.

When designing a study, it is critical to consider the device 
placement. For example, the form factor of certain devices (e.g., 
watches or wristbands) might be able to accommodate most peo-
ple thanks to adjustable straps. In these cases, as per the manu-
facturer’s instruction, it might be preferable to wear the strap a 
few centimeters further away from the wrist, to improve signal 
quality. On the other hand, rings, which are becoming increas-
ingly common, might or might not provide adjustable hardware, 
and therefore selecting devices with an adequate fit for each user 
becomes key. The accurate positioning of devices is even more 
critical for outcomes relying on sensor contact (e.g., PPG-based).

It is important to consider that, depending on the intended 
use, devices may be worn 24/7 (e.g., for circadian measures), or 
during nighttime only. The variable of interest may also dictate 
charging behaviors. For example, users interested only in sleep 
metrics typically do not need to wear the device during the day, 
thus allowing the devices to charge to full capacity during the 
day. However, users interested in data across the 24-h and circa-
dian parameters may need to be more strategic about charging 
behaviors, including the use of multiple shorter charging win-
dows where full charge is not achieved. That said, we know that 
sleep occurs within the greater context of circadian rhythms, and 
therefore is impacted by daytime behaviors such as light expo-
sure, activity levels, and daytime naps.

Once the optimal fit or exact positioning of the sensor has been 
established, each wearable typically comes with an app, usually 
requiring signing up and setting using some login credential or 
software. Particularly for devices relying on cloud services, it is 
best practice to avoid using identifiable information in device set-
tings. At current, we are not aware of devices using demographics 
in their sleep classification algorithms. Thus, it is unlikely that 
the absence of this information (or utilizing artificial, “dummy” 
demographics) would alter the device’s behavior and perfor-
mance. Related to that, it is also recommended to use ad hoc cre-
ated login accounts and avoid participants setting up and using 
their own login credentials (however, this step cannot guarantee 
complete anonymization). It is also important to recognize that 
devices have different privacy policies, and some devices require 
the users to select and give approval to use/sense certain data. 
Thus, it is important to be sure that certain device metrics are 
enabled. If the user does not grant access to those metrics via the 
companion app, these metrics will be not available.

The companion device’s app typically allows some level of 
configurability. For example, self-adjusting bedtime and wake-up 
time are among the relevant available features provided by some 
devices (e.g., Fitbit). While the device aims to automatically detect 
these times, lack of motion (e.g., watching a movie or reading 
from an e-reader in bed) might cause misdetection, and therefore 
bedtime might need manual adjusting. If manual adjusting can-
not be performed (e.g., the software does not provide this func-
tionality), it might be useful to supplement the wearable with, 
for example, electronic diaries so that bedtime can be annotated 
correctly. It is worth mentioning that in-app manually adjusting 
the bedtime and wake-up time by the user may not be equivalent 
to the user directly self-reporting bedtime and wake-up time with 
diaries.

In summary, care should be taken to ensure optimal fit and 
sensor positioning, and clear instructions should be provided to 
the study participants regarding wearing time and potentially in 
terms of manual adjustments of the collected data. The same 
sensors, positioning, and adjustments should be used consist-
ently for the entire duration of the study.

A further critical point of device setup is the temporal synchro-
nization between the wearable device and other data sources, for 
those cases where multiple sources are used (e.g., wearable and 
diary, wearable and environmental sensor, multiple wearables). 
Initial device configuration and subsequent synchronization with 
the dedicated app are usually the procedures through which 
the device’s internal clock is set up, determining the timestamp 
associated with each data point. Making sure that such temporal 
coordinates are synchronized with those recorded by other data 
sources is advised to facilitate subsequent data processing and 
to reduce sources of bias in the data collection. Another consid-
eration is the time zone across devices, which could differ and 
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cause challenges with circadian data. Sudden changes in clock 
time during travel or daylight savings also pose an additional 
challenge for circadian rhythm tracking.

It is important to consider that consumer-grade devices come 
with rich in-app and on-device audiovisual and haptic (e.g., 
vibration) feedback on users’ biobehavioral data, as well as other 
engagement features. Typically, feedback is provided within a 
gamification framework (e.g., rewarding/celebrating improved 
sleep time compared to the last week). It is critical to recognize 
that feedback may directly and/or indirectly affect the behavior of 
individuals. Thus, it is critical that when implementing the use of 
wearables in clinical and research studies, devices and app feed-
back are minimized. Not all devices allow turning off all feedback 
and notifications. In that case, different solutions can supple-
ment the lack of customizability of apps and devices. Solutions 
include the design of specific instructions to participants, as well 
as the use of physical equipment from covering devices’ screens 
(e.g., from the simple use of black tape to sophisticated custom-
ized 3D printed covers).

Critical information to collect from wearable 
sleep-tracking devices
Some wearable information is critical for study reproducibility 
and evaluation of potential confounders. Consumer products 
are frequently updated, leading to inconsistencies in the data 
reported by the various algorithms used before and after an 
update. Hardware changes refer to upgrades of the sensor, e.g., 
when a new version is released. Typically, these do not directly 
impact a study unless the previous version of the sensor is not 
sold anymore, and the researchers require the purchasing of 
additional units. Software changes might concern updated algo-
rithms, e.g., a new sleep stage detection model. Firmware changes 
are typically associated with low-level features, e.g., improving 
artifact removal for beat-to-beat intervals used for HR and HRV 
analysis, which in turn are used for sleep stage estimation or 
the introduction of a new set of accelerometer features. When 
the study is not longitudinal in nature, hardware, firmware, and 
software versions should be annotated as the derived results 
might not be reproducible with different versions. In addition to 
that, when the study is longitudinal, measures should be taken 
to avoid hardware, firmware, and software updates. For exam-
ple, auto-updates for firmware and software should be disabled, 
while hardware should not be changed for a newer version.

User adherence, behavior, and data
Standard actigraphy devices require manual initialization (data 
collection configuration and activate a device in data collection 
mode) with data retrieved upon protocol completion (e.g., after 
a couple of weeks). Thus, data collection failures were realized at 
the end of the protocol.

Conversely, most current wearable devices, including the new 
generation of clinical/research tools, rely on cloud services which 
allow the study team to view the state of data collection in real-
time, when a participant synchronizes their data and what has 
been synched at any moment in time.

Data access and preprocessing requirements
Probably the most critical and overlooked aspect of using wearable 
devices, and particularly consumer-grade devices, is accessing the 
data. Different wearable classes (Table 1) and devices enable differ-
ent modalities for gathering the data. Accessing the data outputted 
by the device is often neither standardized nor possible to automate 

in a signal recording pipeline. The different options available in terms 
of accessing the data might therefore be one of the most important 
decision points when selecting a wearable device. We cover the most 
common ways to access wearable data here.

Importantly, wearable data outputs are not always ready to 
use immediately. Once collected and retrieved, some level of pre-
processing of the data may be required. This is more relevant for 
consumer-grade devices. The following discussion outlines data 
preprocessing and provides examples.

Accessing wearable data
The ability to access the data collected by a wearable device is 
paramount for any study. Therefore, a device must be chosen 
with a clear understanding of what data can be accessed and 
how. There are typically four different modalities by which wear-
ables data can be accessed or exported. Traditional actigraphy 
generally relies on wired communication (e.g., USB) to config-
ure the device for data acquisition, as well as retrieval of data 
collected over the measured period that is stored within the 
device’s internal memory. Inherently, this requires participants 
to acquire the device from the researcher at the beginning of 
the assessment window and return the device at the end of the 
assessment window. Although this procedure aids in the degree 
of control over data acquisition, it is relatively cumbersome in the 
context of current technological advances, such as cloud-based 
services. Furthermore, the process doesn’t provide insight into 
the participant’s adherence to device use during data collection, 
which could result in poor data quality and/or yield upon device 
return. Similarly, researchers are unable to view day-to-day sleep 
and circadian-related outcomes during data collection, with this 
information only available through post hoc review after the 
device has been returned and the data downloaded. Conversely, 
most consumer-grade devices come with a mobile app where 
bedtime, wake-up time, sleep stages, and possibly other param-
eters are reported daily. It is always an option to manually record 
the parameters outputted by the app. However, this relatively 
rudimentary solution confers low reproducibility and is more 
subject to mistakes. Moreover, it is not scalable, i.e., it might be 
impractical with large samples and/or long assessment dura-
tions. In these cases, it would be advisable to use a wearable that 
provides access to the data with more standardized techniques, 
namely through centralized data export (e.g., via cloud services) 
or to automate the data processing pipeline (e.g., via the use of 
a Software Development Kit [SDK] or Application Programming 
Interface [API]).

Cloud services typically consist of online platforms where the 
researcher/clinician can log in and manage the data recorded 
from each study participant/patient. For some consumer-grade 
wearables, cloud services are provided as part of commercial 
services enabling professionals (e.g., sports team coaches, and 
clinical consultants) to manage the data from multiple clients. 
However, in these cases, data export might not be present or be 
limited in terms of time resolution or data streams, whereas 
some platforms associated with consumer-grade devices pro-
vide high-granularity data (e.g., data export via *.csv files of 
minute-by-minute data). It is paramount to check the minimum 
output data resolution before choosing a wearable device. Also, 
because the features and functionalities of centralized data 
export from consumer products might change quite frequently, 
we advise the study team to contact and maintain a relationship 
with the wearable manufacturer to ensure that access to the data 
will be provided for the duration of the study.
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Finally, when available, an SDK or API would allow automa-
tion of the signal processing or data collection pipeline, extracting 
potentially higher resolution data with custom-made software. 
APIs and SDKs often also come with additional costs and limita-
tions on usage, which should be analyzed and compared between 
vendors.

Preprocessing time series data derived from wearable 
sleep-tracking devices
To obtain accurate, reproducible, and high-quality time series 
wearable data (e.g., day-to-day TST estimates) it is critical to 
implement some preprocessing of the device outputs. Data pre-
processing includes all the procedures applied to the data out-
putted by the device for obtaining the final time series on each 
measure to be used in subsequent analyses or clinical reports.

While most research/clinical-grade devices are optimized to 
provide (almost) ready-to-use outputs, data preprocessing is par-
ticularly relevant for consumer-grade devices where the opera-
tionalization of aggregate indicators (e.g., TST, WASO, mean HR) 
is proprietary and undisclosed. For example, wearable companies 
have different rules for classifying a “sleep period” as daytime or 
nighttime sleep, determining whether data quality is sufficient 
for accepting vs. discarding a measurement and whether a uni-
fied sleep episode versus several shorter sleep periods is provided. 
Thus, we recommend some data preprocessing procedures to be 
implemented before analyzing and reporting the collected data. 
Importantly, data preprocessing cannot be easily standardized 
due to its dependency on the specific data type and format out-
putted by each device (e.g., raw data vs. aggregate indicators). 
Therefore, there are many degrees of freedom for researchers and 
clinicians, with important implications for the study results. In 
all cases, it is paramount to transparently report and justify such 
preprocessing steps and decisions.

At the highest level of reproducibility, we recommend relying 
on raw data or, if unavailable, starting with the data exported 
at the maximal possible resolution (i.e., highest granularity). 
This minimizes the automatic data aggregation procedures 
programmed by wearable companies (often undisclosed) while 
increasing the transparency on how aggregate indicators are 
computed. For instance, when a device provides both epoch-by-
epoch and nightly aggregate measurements, it is advisable to rely 
on the former and apply standard AASM definitions for comput-
ing sleep measures. Open-access tools have been recently made 
available in both R and Python for standardizing the computation 
of sleep parameters from epoch-by-epoch data in a replicable 
and AASM-compliant manner [16, 56]. Similarly, when possible, 
relying on raw biological signal data (e.g., PPG signal) rather than 
using automatically aggregated indicators (e.g., hourly mean HR) 
is advisable for better transparency and reproducibility of all sig-
nal preprocessing steps (e.g., data filtering, inter-beat intervals 
detection).

At a lower, but still acceptable, level of reproducibility account-
ing for more pragmatic arguments (e.g., need to optimize data 
preprocessing for clinical applications, lack of time and personnel 
resources), we still recommend a few key steps are considered 
to avoid misleading results, namely: temporal synchronization, 
explicit definition of “sleep periods,” data quality check, and 
visual representation.

First, it is important to verify and synchronize the temporal 
information associated with each measurement. Temporal syn-
chronization across data points and data types is critical to ascer-
tain that the time series is correctly encoded without gaps, double 

recordings, and other possible issues due to lack of temporal 
alignment (e.g., data recorded in different time zones, switches 
between daylight saving and standard time). Second, it is always 
advisable to check and, if necessary, adjust the device definition 
of “sleep period.” Most devices aggregate sleep indicators over 
time windows automatically identified between the first and the 
last sleep epoch (Table 3). Verifying and making explicit whether 
this or alternative “sleep period” operationalizations were used is 
critical for interpreting certain sleep measures (e.g., SOL, WASO, 
SE). Moreover, some devices might accept excessively short “sleep 
periods” (e.g., a few minutes) or record multiple periods within 
the same night. In these cases, it is advisable to apply some pro-
cedures for discarding and/or combining data points based on the 
adopted definition.

For instance, Menghini et al.. [63] analyzed 2 months of Fitbit 
Charge 3 data in a sample of adolescents. To reach a more accu-
rate sampling of nocturnal sleep, the authors arbitrarily defined 
“nocturnal sleep periods” as sequences of 180+ min of sleep 
starting between 6 PM and 6 AM. Then, based on that definition, 
the authors introduced a set of ad hoc data filtering rules that 
resulted in the removal of about 14% of cases (e.g., diurnal peri-
ods starting before 6 PM, nocturnal periods shorter than 180 min). 
Moreover, the authors realized that multiple distinct “sleep peri-
ods” were outputted by the device on some nights, which they 
combined into a single “sleep period” by considering the time in 
between as WASO. This approach guaranteed a strict correspond-
ence between the phenomenon focused by the study hypotheses 
(i.e., nocturnal sleep and sleep disruption) and the data used to 
generate the study results, in addition to providing better repro-
ducibility of the study procedures.

A third key preprocessing step is the inspection of data quality 
to filter unreliable observations. For instance, compliance infor-
mation such as wearing/off-wrist time can be used to exclude 
observations characterized by excessive data loss. Alternatively, 
the same information might be considered as a statistical control 
in the following analyses [139]. Similarly, participants without a 
minimum amount of accepted data might be discarded from the 
following analyses. For example, recent studies highlighted that 
at least five-to-seven nights are necessary to capture reliable indi-
vidual differences in TST and other indicators [140, 141].

Finally, a visual representation of the time series obtained for 
each measure is highly recommended to get a more general over-
view of these and further potential issues. Substantial changes in 
aggregate measurements or data quality indices over time might 
highlight algorithm/firmware updates, technical problems with 
some sensors, or changes in participant use of the device. In such 
cases, it is advisable to separately analyze the identified subsets 
of data or to include time as a covariate in the following analyses. 
For instance, Menghini et al. [63] filtered all temporally isolated 
data points that were recorded 10 + days or after the remaining 
measurement.

Device wear time information
Few devices provide information about individual compliance 
with the ambulatory assessment, mainly based on estimates of 
the amount of time the person wore the device (e.g., time or pro-
portion of time for on- and off-wrist).

When wearing time is not provided, wearing time can be 
estimated by integrating multiple signals such as acceleration, 
temperature, and external light. For example, some devices 
(e.g., Empatica Embrace Plus) use on-skin detection algorithms 
to automatically identify and filter the data recorded while not 
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being used as intended, reducing the likelihood of including 
unreliable observations. Some devices and applications also pro-
vide signal-specific indicators of the recording reliability or data 
quality, for instance, based on the number of artifacts or missing 
data points. Both data quality and compliance information can be 
useful for data cleaning or for evaluating the impact of data qual-
ity on the study results. Depending on the device, data quality 
information can be outputted with several formats, ranging from 
simple and intuitive qualitative indicators (e.g., “poor” vs. “accept-
able/optimal”) to more detailed information on the exact amount 
of data that was automatically removed or corrected.

It is important to know that some authors developed ad hoc 
processes and best practices to evaluate wearing time and accept-
ing wearable data points. For example, Wing and colleagues [139] 
considered the availability of minute-level HR data to establish if 
the device was worn. The authors excluded minutes without HR, 
HR exceeding thresholds for unlikely/aphysiologic values, and/
or HR values that were part of strings of consecutive repeated 
or missed HR values. They used thresholds of wearing time to 
exclude days not considered to represent “typical activity.”

Integration with experience sampling methods
The integration of wearable with experience sampling methods 
(ESMs) is of growing interest. ESMs refer to the repeated assess-
ment of current psychological states, experiences, and activities 
in real-time and free-living conditions [142]. This is done through 
standardized and short sets of questions pushed to the recipient 
for response at predefined time points (e.g., every hour, every day 
at 9 PM) or contingently to specific events or contexts (e.g., bed-
time, location). The synergetic use of wearables and ESMs allows 
for designing ecological momentary assessment and intervention 
protocols, which are increasingly used for both research and clin-
ical applications in the sleep and circadian field (e.g. [33, 143]).

Usually, there is a need to rely on multiple data sources (e.g., 
third-party surveying applications) to supplement wearable 
assessment with ESMs. For this purpose, third-party mobile and/
or web-based surveying applications are commonly used (e.g., 
RedCap, Qualtrics). Open-access options are also available (e.g., 
m-path, Sensus). Some platforms can extract wearable data 
while allowing for the use of ESMs (e.g., ilumivu). Interestingly, 
some devices (e.g., Fitbit Sense + Fitabase) allow self-report data 
collection via dedicated mobile applications or directly through 
the device interface. Some features enable the scheduling of 
customizable messages, and questions, with reminders that can 
be prompted at predefined times directly on the device screen. 
Further building on ESM, wearable devices are a powerful input to 
just-in-time-adapitve interventions [144], personalized interven-
tions delivered in real-time in response to changes in an individ-
ual’s internal and contextual state.

Privacy, security, and ethical concerns
Although it is not our intent to extensively cover these topics, we 
would like to highlight some important concerns related to pri-
vacy, security, and ethics with the use of sleep wearables, as well 
as some practical actions that can be taken to mitigate some of 
the risks in research and clinical work.

While several devices are sold and used internationally, pri-
vacy rules and regulations differ across countries. In the United 
States, the “patchwork” nature of federal and state laws and reg-
ulations surrounding the collection and use of health-related 
data is rather complex [145]. Furthermore, data collected outside 

of healthcare services (e.g. data under the control of the device 
manufacturer) may not be regulated by the Health Information 
Portability and Accountability Act. In many instances, laws ena-
ble companies to use data collected by health devices without the 
user’s consent and it is impossible for the user to know for what 
purposes their data could potentially be used and with whom it 
could be shared. The sleep-tracking device pool is composed of a 
mixture of devices, some regulated by the FDA as class II medical 
devices and many that are considered wellness devices. Similarly 
in Europe, although the General Data Protection Regulation cov-
ers several areas of privacy, data security, and consumer rights, 
the differentiation of lifestyle health from medical information 
remains unclear. Overall, similar data collected with different 
classes of wearables may be regulated differently [146]. Yet, even 
if some sleep wearables are marketed for “wellness tracking,” they 
are likely to be used for health-related motives and may have spe-
cific features that are FDA-cleared (e.g., atrial fibrillation detec-
tion, oximetry).

While the venue of wireless communications in sleep weara-
bles creates exciting new possibilities, it also opens the door to 
privacy threats. In remote health tracking, wireless communica-
tions have been identified as the venue via which most attacks 
take place and this is complicated by the numerous stakeholders 
involved at different stages of communication processes [147]. A 
large array of privacy attacks have been identified (e.g. man in the 
middle, battery drain attacks) and several countermeasures can 
be implemented in the development phase [148–151]. Some pre-
ventative strategies that can be implemented by clinicians and 
researchers are to refrain from inserting any personally identifi-
able information in device settings and to evaluate issues related 
to specific populations like minors. For example, in the US, the 
“Children’s Online Privacy and Protection Act” places “parents 
in control over what information is collected from their young 
children online.” Wearables leveraging cloud-based data transfers 
result in the exposure of data to wearable companies and net-
work/internet service providers. In such cases, researchers, and 
clinicians lose control over several aspects of data management 
for their participants or patients. Informed consent processes 
therefore need to transparently disclose that data is shared with 
third parties.

From an ethical standpoint, sleep wearables also call for con-
siderations about safety and accessibility. Safety concerns have 
been raised about the medicalization of everyday sleeping expe-
riences since some sleep metrics are of questionable relevance 
outside of the context of sleep pathologies [152]. For instance, 
low SE in healthy sleepers who may enjoy spending extended TIB 
without fueling negative conditioning may be inconsequential. 
Daily tracking of sleep metrics without proper guidance may lead 
to pathologizing and hypernudging [153, 154]. This aligns with 
increasing concerns about orthosomnia, where wearable users 
become overly perfectionistic and preoccupied with improving 
their sleep [155]. Special clinical attention may be required to 
avoid inappropriate coping mechanisms and minimize stress and 
mental health risks.

There are multiple characteristics of wearable sleep-tracking 
devices that may increase existing health disparities. As previ-
ously discussed, PPG may be less accurate in individuals with 
dark skin tones. Therefore, direct measurements and aggregate 
parameters calculated from PPG-derived quantities may also 
be less accurate in dark-skinned individuals [132]. Additionally, 
algorithms that estimate health-related metrics from wearable 
signals often use machine learning. Machine learning algorithms 
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perform optimally when presented with data that is similar to the 
data that trained the algorithm. Under-represented groups are 
likely to be under-represented in training data sets; particularly 
if inclusion in the data set requires access to wearable devices 
and medical care. Therefore, machine learning algorithms to 
derive sleep and other health metrics may underperform in 
minority populations [156]. Collectively, these shortcomings may 
result in an understanding of sleep that is incomplete in certain 
groups and interventions poorly adapted to specific populations 
[132]. Mitigation of these biases should be a priority in promoting 
rational, safe wearable technology use in health care.

When wearable data is integrated into clinical care, provid-
ers also need to manage their patients’ expectations regarding 
data collection and sporadic, triggered viewing versus continu-
ous monitoring of sleep data. Wearables offer great potential for 
increasing access to care, provided that equity policies are put in 
place. As the scientific evidence builds up to support potential 
clinical applications, there will be a need to advocate for better 
integration within healthcare systems including IT infrastruc-
ture, patient and staff education, and appropriate reimbursement 
mechanisms for provider and staff time spent viewing longitudi-
nal sleep data derived from wearable sleep-tracking devices. One 
of the financial aspects of wearable use that is becoming chal-
lenging to reconcile with the structure of both patient care and 
research is business models based on frequent hardware updates 
and continuous subscription fees. Another key aspect of access 
pertains to digital literacy and users’ difficulties in interpret-
ing sleep data [157]. Importantly, the relevant outcomes related 
to the use of wearables in clinical sleep medicine are unclear. 
Though the use of consumer-grade wearable devices as a surro-
gate for traditional research/clinical-grade actigraphy could allow 
more providers to follow the recommendations set forth by the 
AASM and would provide measurement-based care, it remains 
unknown whether incorporation of longitudinal sleep data would 
actually improve care or result in untoward consequences (e.g. 
overreliance on wearable data and neglect of self-report symp-
toms). Overall, more work is needed to develop optimal means 
of guiding the use of sleep wearables in clinical populations, and 
awareness of privacy, security, and ethical implications of weara-
ble use is paramount for sleep healthcare and research.

How to select a wearable sleep-tracking 
device?
In the attempt to guide the reader to make an informed choice, 
the following questions should be considered as a checklist to 
help to select the right device, to serve the specific research/clin-
ical study needs (Figure 4).

Avoiding misleading conclusions: a call for 
cautious interpretation of data derived from 
wearable sleep-tracking devices
The magnitude and extent of wearable use and generated sci-
entific outcomes/discoveries from wearables exponentially 
increased over the past few years, with a forecasted uptrend. 
Thus, we believe it is our responsibility to call for a cautious inter-
pretation of wearable data.

When interpreting study outcomes based on data collected 
using wearable sensors, caution must be taken for several rea-
sons. First, while each sensor provides several parameters, many 
of them described in this manuscript, not all parameters are 

equally trustworthy. A simple distinction we can make is between 
what is estimated, and what is measured. Regardless of the trans-
parency of the wearable manufacturer in terms of algorithmic 
details, estimates tend to involve larger errors. Examples of esti-
mates are sleep stages or recovery scores. Even when something 
is more directly measured, we still need to establish the meas-
urement error and evaluate the sensor’s accuracy with respect 
to the gold standard (e.g., HR derived from PPG with respect to 
HR derived from ECG), but we typically have fewer steps in the 
pipeline. Looking at available published literature for different 
parameters might be indicative of which parameters are meas-
ured with relatively high accuracy, and which parameters are 
estimated with higher error. For example, parameters for which 
multiple sensors provide similar values, tend to be more reliable. 
Parameters, for which different sensors provide dramatically dif-
ferent results, are likely not something that should be trusted yet.

Another important aspect to consider, especially for estimates 
(e.g., sleep stages), is the population from which data was col-
lected for algorithm development. Each algorithm is typically 
trained on a number of participants from studies that were run 
internally by the wearable manufacturer or in a convenience 
sample (e.g., clinical sleep lab), and may not represent the pop-
ulation of interest of the study that the wearable sensors will be 
deployed. When our study population differs from the population 
used to train the algorithms, we might have a larger error for the 
parameters of interest. Unfortunately, this is a common scenario 
as specific clinical populations are hardly ever considered when 
developing algorithms, especially when consumer products tar-
get a different market. As noted previously, other characteristics 
of the population of interest (e.g., skin tone) might also impact 
certain parameters (e.g., blood oxygenation) with augmented dif-
ferences between sensor locations (e.g., wrist or finger).

It is also important to consider that some indices like HRV 
measures strongly require contextualization and are highly 
dependent on the context in which they are measured (e.g. rest 
versus exercise), calling for extra caution in their use and inter-
pretation [1].

Conclusion
Wearable sleep technologies, and particularly, ubiquitous and 
highly accepted consumer-grade sleep-tracking devices hold sig-
nificant promise in furthering our understanding of normal and 
disordered sleep and its role in health and disease. This manu-
script outlined the benefits and limitations that wearables con-
fer in sleep research and provided recommendations to promote 
rigorous and reproducible scientific inquiry. Understanding the 
derivation of sleep and other parameters from wearable acquired 
signal, the potential for artifact, the performance of the device 
against the gold-standard measurement (and limitations in trans-
lating the cited performance to real-world use), and the post- 
collection data extraction and processing techniques are critical 
when conducting research with wearable sleep-tracking technol-
ogies. The research study’s population of interest and scientific 
question(s) will drive device selection and implementation. Even 
if the considerations for device selection and use are rigorously 
taken into account, inherent characteristics of wearables have 
the potential to widen health disparities and produce spurious 
results (e.g., reduced performance of PPG sensors on individuals 
with dark skin tones and increased skin thickness, wearable’s 
performance can be contingent on the extent of sleep disrup-
tion). Therefore, cautious, informed use is crucial. Ultimately, 
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the unique properties of multi-sensor consumer-grade wearable 
sleep trackers will provide a window into sleep beyond what is 
provided by traditional actigraphy given the ability to co-record 
autonomic parameters, estimate circadian features, and the 
potential to integrate other self-reported, objective, and passively 
recorded health indicators. Combined with experiential sampling 
methods and just-in-time adaptive interventions, wearables will 
contribute to the personalization of sleep medicine and wellness.
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Figure 4. Checklist to help the reader select the right device for a research/clinical study.
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